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A symplectic manifold is a smooth manifold (M,w) (eventually with a
boundary) endowed with a closed nondegenerate differential 2-form w. A
smooth map F': (M;,w;) — (Ms,ws) between two symplectic manifolds is
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Abstract

This course is an introduction to symplectic topology via the sur-
prising Gromov’s nonsqueezing theorem. This theorem assert that if
there is a symplectic embedding which maps the ball B2"(0,r) into
the cylinder B2(0, R) x R2®~1) then < R. The first course will be
devoted to the introduction of some elementary properties of symplec-
tic vector spaces and the proof of affine nonsqueezing theorem and
the introduction of the linear symplectic width. The second course
will be devoted to the introduction of symplectic manifolds and some
of their immediate properties, namely, we will prove Darboux’s theo-
rem. In the last course, we will prove that the nonsqueezing theorem
is equivalent to the existence of symplectic capacities and we will de-
fine the Hofer-Zehnder capacity and then prove Gromov’s theorem.
Finally, by using symplectic capacity we give a definition of symplec-
tic homeomorphisms as a generalization of symplectic diffeomorphisms
and hence give rise to symplectic topology.

Introduction

called symplectic if F*w,; = wy.

The standard model of a symplectic manifold is the Euclidean space R?"

endowed with its canonical symplectic form

Wy = i dl‘l VAN dyu
i=1
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where (z1,...,Z,,¥1,...,Ys) are the canonical linear coordinates of R?. A
symplectomorphism of (R* wy) is a diffeomorphism F : R*" — R*"
such that F*wy = wy. It is obvious that a symplectomorphism F' is also
a preserving-volume diffeomorphism since F*Q) = ) where (2 = A"w is a
volume form associated to wy. Long time ago, many people used to believe
that whatever could be done with a preserving-volume diffeomorphism could
be done by a symplectomorphism (called canonical transformation by
physicists). This belief was supported by the case n = 1 where both notions
in fact coincide. When some people began to suspect that the group of
symplectomorphisms is significantly smaller than the group of preserving-
volume diffeomorphism there was no result to pinpoint the difference until
Gromov proved his celebrated nonsqueezing theorem in 1985. This says that
the standard closed symplectic ball cannot be symplectically embedded into
a thin cylinder.

More precisely, the symplectic cylinder of radius R > 0 is

Z7(R) = {(z1, ..., Ty y1, .-, yn) ER™, 2 +y; < R*} ~ B*(R) x R*" 72,

We denote the Euclidean closed ball of center 0 and the radius r in R?" by
B2 (r).

7

Theorem 1.1 If there is a symplectic embedding F : B*"(r) < Z*"(R) then
r < R.

The Gromov’s original proof used .J-holomorphic curves [6]. In this course
we give another proof of this theorem using the notion of symplectic capacity,
namely, the symplectic capacity introduced by Hofer-Zehnder in [5]. Indeed,
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Gromov’s nonsqueezing theorem gave rise to the following definition which is
due to Ekeland and Hofer [2]. A symplectic capacity is a functor ¢ which
assigns to every symplectic manifold (M, w) a nonnegative (possibly infinite)
number ¢(M,w) and satisfies the following conditions.

e (Monotonicity) If there is a symplectic embedding (M, w;) < (Mz, ws)
and d1mM1 = dlmM2 then c(Ml,wl) S C(MQ,(UQ).

e (Conformality) ¢(M, \w) = |A|c(M,w).
e (Non triviality) ¢(B**(1),wp) > 0 and ¢(Z?"(1),wp) < 00.

The key to understanding symplectic capacities is the observation that the
non triviality axiom makes it impossible for the volume of M to be a capacity.
The requirement that ¢(Z?"(1),wp) be finite means that these capacities are
2-dimensional invariants.

The existence of symplectic capacities is non trivial. In fact, we have the
following proposition.

Proposition 1.1 The existence of a symplectic capacity ¢ satisfying
¢(B*"(1),wo) = ¢(Z*"(1),wo) = 7 (1)
15 equivalent to Gromov’s nonsqueezing theorem.

Proof. Suppose that there is a symplectic capacity satisfying (1) and sup-
pose that there exists a symplectic embedding (B?"(r),wy) < (Z*"(R),wo).
The monotonicity axiom implies

¢(B¥(r),wy) < ¢(Z*(R),wp).
Now it is easy to see that we have the following symplectic equivalences:
(B*™(r),wo) =~ (B*(1),7%wy) and (Z*"(R),wo) ~ (Z**(1), R*wy).

By the normality axiom we get that 7> < R? and the Gromov’s nonsqueezing
theorem follows.

Conversely, suppose that the Gromov’s nonsqueezing theorem holds. For any
symplectic 2n-dimensional manifold (M, w), put

CG(Ma W) = Sup E(Ma W),
where

E(M,w) = {mr?| (B*'(r),wo) embeds symplectically in M} .
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Let us show that c¢g is a symplectic capacity satisfying (1). It is called
Gromov width.

According to Darboux’s theorem (see Theorem 3.1), there exists always a
symplectic embedding of a closed symplectic ball (B?"(r),wp) in (M,w) and
hence ¢ (M, w) is well-defined.

Suppose that there is a symplectic embedding (M;,w;) — (M, ws) and
dim M; = dim M5. Then

E(Ml, wl) C E(MQ, w2)

and hence cq(Mi,wr) < ¢g(Ma,ws).
On the other hand, we have for any A # 0,

E(M, \w) = {|)\‘7T7’2‘ (B*(r),wo) embeds symplectically in (M,w)}

and hence cg(M, \w) = |A|cg(M,w).
Now it is obvious that ¢g(B**(r),wy) = mr?. Moreover, the inclusion

(B*"(R), wo) = (Z*"(R),wo)

is a symplectic embedding and hence ¢g(Z**(R),wy) > 7wR%. On the other
hand, if
(B*(r),wo) = (Z*"(R),wo)

is a symplectic embedding then according to Gromov’s nonsqueezing theorem
r < R and hence ¢g(Z**(R),w) < mR?. Finally,

ca(Z*"(R),w) = TR?,

and the proposition follows. O

2 Affine nonsqueezing theorem

2.1 Symplectic vector spaces

Let (ey,. .., €s,) denote the canonical basis of R?". The bilinear skew-symmetric

2-form .

_ * *
wo =) € Nefy,

=1

is non-degenerate, i.e.,
wo(u,v) =0 Vo € R* = u = 0.
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The couple (R*",wj) is the standard example of symplectic vector space.
More generally, a symplectic vector space is a couple (V,w) where V is
finite dimensional R-vector space and w is a bilinear skew-symmetric 2-form
on V which is nondegenerate. This means that w satisfies:

1. w is bilinear;
2. for any u,v € V, w(u,v) = —w(v, u);
3. forany u € V,

wu,v) =0 YveV = u=0.

A symplectic vector space must be even dimensional. Indeed, if (V,w) is

a symplectic vector space and (uq,...,u,) is a basis of V, then the non-
degeneracy of w is equivalent to the fact that the matrix (w(ui,uj))?jzl is

invertible. Since a skew-symmetric odd dimensional real matrix must have
vanishing determinant we deduce that n is even.

Let (V,w) be a symplectic vector.

e A linear symplectomorphism of V' is a vector space isomorphism
® : V. — V which preserves the symplectic form w, i.e., for any
u,v eV,

O*w(u,v) = w(dPu, Pv) = w(u,v).

The linear symplectomorphisms of (V,w) form a group which we denote
by Sp(V,w). In the case of the standard symplectic structure on R?",
we denote Sp(2n) = Sp(R*", wy).

e Let W C V be a vector subspace. The symplectic orthogonal of W
is the vector space

W« ={ue Vw(u,v) =0Yv € W}.
Proposition 2.1 We have
dimW* +dimW =dimV  and (W*)* =W.
Proof. We define +: V' — V* by putting
uv) = w(v,.),
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where w(v,.) : V — R, u — w(v,u). The nondegeneracy of w is equivalent
to the fact that ¢ is bijective and we have (W) = W where W? is the
annihilator of W, i.e.,

W= {aeV* a(W)=0}.

Now, it is well-known that dim W° = dim V' — dim W and the first formula
follows.
It is obvious that W C (W®)“ and according to the first formula we have
dim W = dim(W¥)“ and hence (W«)* = W. O
A vector subspace W of V is called isotropic if W C WY, coisotropic if
W« c W, symplectic if W N WY = {0}, Lagrangian if W = W«.

The following theorem is the main result of this subsection. It asserts that
all symplectic vector spaces of the same dimension are symplectomorphic.

Theorem 2.1 Let (V,w) be a symplectic vector space of dimension 2n. Then
there exists a basis (e1,...,€n,€1,...,€,) such that

w(e; ) =w(e;,e) =0 and w(e;, €)= 0.
Such a basis is called a symplectic basis. Moreover, there exists a vector
space isomorphism ® : R?" — V such that
O w = wo-

Proof. By induction over n. If n = 1, there exists obviously two vectors e, e
such that w(e,e) = 1 and hence (e, €) is the desired basis.

Suppose that the result holds for n. Let (V,w) be a 2n + 2-dimensional
symplectic vector space. Since w is nondegenerate there exists two vectors
e, €1 such that w(e;,e;) = 1. These vectors are linearly independent and
span a 2-dimensional vector subspace W. Let us show that W is a symplectic
vector subspace. Indeed, if u € W N WY then u = ae; + béy,

0=w(u,e;) =—=b and 0=w(u,é)=a.

Hence v = 0. Thus, according to Proposition 2.1,

V=WaoWw*,
and moreover (W w) is symplectic vector space. By induction hypothe-
sis, there exists a symplectic basis of W* (eq,...,e,,€,...,€,). Finally,
(€1,...,€n,€1,...,€,) is symplectic basis of V.

The isomorphism ® : R?® — V given by

n

D(x1,. o Ty Y1y e ey Yn) = Z(xiei + v:6;)

i=1



satisfies ®*w = wy. O

The volume form associated to a symplectic vector space (V,w) is the
2n-form given by
n

AQ=w"=wA...\Nw.

Note that € # 0 and, more precisely, if (eq,...,e,,€1,...,€,) is a symplectic
basis then
Q=nl(e]Ne]N... e, NE,).

2.2 Linear symplectic group

In this subsection, we study the linear symplectomorphism group of a sym-
plectic vector space in more detail. According to Theorem 2.1 it suffices to
study the symplectomorphism group of (R?*",wp). Let By be the canonical
basis of R?" and (, ) the Euclidean inner product of R?". The matrix of wy

in By is the matrix
3 — 0 I,
o=\ -1, 0 )"

We have obviously J3 = —I,,
(Jou, Jov) = (u,v) and wo(u,v) = (Jou,v). (2)

It is easy to check that an isomorphism of R?" is a linear symplectomor-
phism iff its matrix ® in B, satisfies

®TJ,d = Jo. (3)

So we can identify Sp(2n) to the space of 2n x 2n-matrices which satisfy (3).
If we write a 2n x 2n-matrix ® as

A B
*-(& )
where A, B, C' and D are real n x n-matrices. It is straightforward to check
that ® satisfies (3) iff
ATC =C"A, B'D=D"B and A'D-C'B=1,. (4)

Note first that a linear symplectomorphism preserves the volume form and
hence its determinant is equal to 1. Thus

Sp(2n) C SL(2n,R) := {® € GL(2n,R), det® = 1}.
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Note also that, according to (3), ® € Sp(2n) iff T € Sp(2n).
We identify GL(n,C) with a subgroup of GL(2n,R) as follows

X =Y

X 4+1Y € GL(n,C) — ( v X

) € GL(2n,R).

With this identification in mind, one can see easily that
GL(n,C) = {® € GL(2n,R), ®Jy = JoP} .

The unitary group is identified to

Uln) = {( Sy ) € GL(n,C), (X + V) (X —1Y)T = In}.

Lemma 2.1 We have
Sp(2n) N O(2n) = Sp(2n) N GL(n,C) = O(2n) N GL(n,C) = U(n).
Proof. Let ® be a 2n x 2n real matrix. We have the following equivalence:
¢ € GL(n,C) = Jy = Jo?,

®€Sp(2n) <=  TJ® = J,
dcO@2n) <= 0D =1,

It is obvious that any of these conditions imply the third. Now, according to
(4), the subgroup Sp(2n) N GL(n, C) consists of this matrix

X =Y
<I>:(Y D% )GGL(Zn,R)

which satisfy
XY =Y'X and X'X+4+Y'Y=1I,.

This is precisely the condition
(X + V) (X - =1,

OJ
For any ® € GL(2n,R) we denote by o(®) C C the set of zeros of the
characteristic polynomial associated to ®, i.e.,

AN€o(P) <= det(®—Ay,)=0.

For any A € o(®) we denote by m(A) the multiplicity of A as a zero of the
characteristic polynomial. Note that

o(®)=0(®") and o(@ ") ={N" Nea(®)}.



Lemma 2.2 Let ® € Sp(2n). Then:

2. If £1 € o(®) then it occurs with even multiplicity.

Moreover,
Pz=az, P =Nz, \W#£1 = wyz?).
Proof. Since J2 = —1I5,, we get from (3)
et = J,o 1y !
and hence

a(q)_l) = U(CIDT) =o(P).

From this relation, we deduce that

AEa(®) AAE]

with p € N. On the other hand, since

l=det®= J[ am
Ao (D)

we deduce that if —1 € o(®) then m(—1) is even. Moreover, since the degree
of the characteristic polynomial is even the eigenvalue 1 occurs with even

multiplicity as well.
The last statement follows from the identity

wo(Pz, P2") = wo(z, 2') = AN wy(z, 7).

Let P € GL(2n,R) symmetric and positive definite. Then P is diagonal-
izable in an orthonormal basis, i.e., there exists a matrix ) € O(2n) such

that
AN 0 .00
0o . :
P == Q . . QTa
: 0
0 0 Ao,



where 0 < A\; < ... < Ag,. For any real number o > 0 put

A0 ... 0
. 0 - :
Pr=Q| - _ ; Q.
0 ... 0 X,

It is an easy exercise to show that P does not depends on Q).

Lemma 2.3 If P = PT € Sp(2n) is symmetric, positive definite symplectic
matriz then P* € Sp(2n) for any real number a > 0.

Proof. We will show that, for any z, 2’ € R?",
wo(P%z, P*Z') = w(z, 7). (%)

First, denote by 0 < Ay < ... < )\, the different eigenvalues of P and
Vs« .., Vi, the corresponding eigenspaces. We have

R =V, @...0V,,.

We distinguish two cases:

o 2V, 2 €V, and \jA; # 1. Then P2 = A\{z and P*2' = \$2' and
according to Lemma 2.2 wy(z, 2') = 0 and (x) holds.

e z€ V), 2 €Vy and \i\; = 1. Then Pz = Az, P*2' = \§2' and ()
holds. O]

Let us recall the polar decomposition of the linear group GL(n,R).

Theorem 2.2 Let A € GL(n,R). Then there exists an unique couple (O, S5)
such that
A= S50,

where O € O(n) and S is symmetric, positive definite.

Proposition 2.2 The unitary group U(n) is a mazimal compact subgroup of
Sp(2n) and the quotient Sp(2n)/U(n) is contractible.

Proof. First let us prove that the quotient Sp(2n)/U(n) is contractible.
Now, according to Theorem 2.2, every matrix & € Sp(2n) can be uniquely
decomposed as

® =S50
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where S is symmetric and positive definite and O is orthogonal. By the
preceding lemma
1
S = (®d")2 € Sp(2n)

and hence
O = S7'® € Sp(2n) N O(2n) "= > U(n).

Thus the map
Sp(2n) x [0,1] — Sp(2n) : (®,1) — (D7) 2

is a retraction of Sp(2n) onto U(n).
To see that U(n) is a maximal compact subgroup, let G C Sp(2n) be

any compact subgroup. We must show that G is conjugate to a subgroup of
U(n). Wed define P € Sp(2n) by

P = / g"gdyg
G

where dg is the Haar measure of G. It is obvious that P is symmetric and
positive definite. Moreover, we have, for any ® € G,

oTPe = T ( / ngdg)CD
G

= / (9@)" (g¢)dg
G
- P

Since P? is a symplectic matrix we obtain
PeG = PIOP:eSp(2n)N0E2n) "= Uhn).

This proves the proposition. O

2.3 The affine nonsqueezing theorem

An affine symplectomorphism of R?*" is a map ¢ : R?® — R?" of the
formula

d(z) = Pz + 2,

where ® € Sp(2n) and z; € R*". We denote by ASp(2n) the group of
affine symplectomorphisms. The affine nonsqueezing theorem asserts that
a ball in R?" can only be embedded into a symplectic cylinder by an affine
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symplectomorphism if it has a smaller radius. The symplectic cylinder of
radius R > 0 is

Z7(R) = {(z1, ..., T, Y1, .-, yn) ER™, 2T +y; < R*} ~ B*(R) x R*" 72,

We denote the Euclidean closed ball of center 0 and the radius r in R?*" by
B*(r).

Theorem 2.3 Let ¢ € ASp(2n) and assume that ¢(B*'(r)) C Z*"(R).
Then r < R.

Proof. Write ¢(z) = ®(2)+ 2o with ® € Sp(2n) and z; € R*" and denote
by (e1, ..., e2,) the canonical basis of R*". The condition ¢(B**(r)) C Z*"(R)
is equivalent to

Vi B, (B + AP + (@)t + )2 < R (4)
Now it is easy to see that
(@) = (®Ter,u) and  (B(u))nsr = (@Ten i, u).
The crucial point is that since ®* € Sp(2n),
wo(®Ter, ®Teni1) = woler, ensr) = 1.
So, by using (2) and the Cauchy-Schwarz inequality, we get
1 =wo(®Ter, @Te,yr) < [@Ter||®Tenp].

This inequality implies that either |®Te;| or |®Te, 1| is greater than or equal
to one. Assume without loss of generality that |[®Te;| > 1 and choose in (*)

U= erlgzl where € is the sign of z}. We get
r? < (r|@Ter| + |2))* + (P(u)nir +271)* < R,
and the theorem follows. O

The nonsqueezing property characterizes in fact linear symplectomor-
phisms. We call a subset A C R>" a linear symplectic ball of radius
r if there exists ® € Sp(2n) such that A = ®(B?"(r)). It results that A and
B?"(r) must have the same volume and hence r does not depend on ®. In
a similar way, a subset Z € R?" is called linear symplectic cylinder if
there exists ® € Sp(2n) and r > 0 such that Z = ®(Z?"(r)). It follows from
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Theorem 2.3 that for any linear symplectic cylinder Z the number » > 0 is a
linear symplectic invariant. Indeed, suppose that

Z = @(2°"(r1)) = ©2(Z*"(r2))
with @, @y € Sp(2n). Since B**(r1) C Z**(r1) we deduce that
;1P (B> (1)) C Z°"(r2)

and by Theorem 2.3 r; < ro. A similar argument gives 7o < r; and hence
K = To.

A nonsingular 2n x 2n matrix @ is said to have the linear nonsqueezing
property if for every linear symplectic ball B of radius r and every linear
symplectic cylinder Z of radius R we have

®B)CZ = r<R

The following theorem shows that linear symplectomorphisms are charac-
terized by the linear nonsqueezing property. More precisely, we must also
include the case of anti-symplectic matrices ® which satisfy ®*wy = —wy.

Theorem 2.4 Let ® be a non singular 2n x 2n matriz such that ® and
&1 have the linear nonsqueezing property. Then ® is either symplectic or
anti-symplectic.

Proof. Assume that ® is neither symplectic nor anti-symplectic. Then
neither is ®T and so, by a density argument, there exists vector u,v € R*®
such that

wo(®Tu, ®Tv) # Fwo(u, v).

Perturbing u and v slightly, and using the fact that & is nonsingular, we
way assume that wy(u,v) # 0 and wo(®Tu, ®Tv) # 0. Moreover, replacing
by ®~1 if necessary, we may assume that wo(®Tu, ®Tv) < wy(u,v). Now, by
rescaling u if necessary, we obtain

0 < A = wo(®Tu, ®Tv) < wo(u,v) = 1.

Hence there exist symplectic bases (uq, vy, ..., up, v,) and (uf, vy, ... ul,v))
of R?" such that

up=u, v =v, u,=A"10Tu, v =+\"1dTw.

Denote by U € Sp(2n) (resp. ¥’ € Sp(2n)) the matrix which maps the canon-
ical basis of R*™ t0 (u1,...,Un,v1,...,v,) (vesp. (uf,...,ul, v}, ..., 0))).
Then the matrix

A=0"1oTV
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satisfies
A61 = )\61 and Afl = :i:>\f1

This implies that the transposed matrix AT maps the unit ball B?*(1) to
cylinder Z?*()\). But since A < 1 this means that ® does not have the
nonsqueezing property in contradiction to our assumption. This proves the
theorem. 0J

The affine nonsqueezing theorem gives rise to the notion of the linear
symplectic width of an arbitrary subset A C R?", defined by

W, (A) = sup {7r?| ¢(B**(r)) C A for some ¢ € ASp(R*")} .

It follows from Theorem 2.3 that the linear symplectic width has the following
properties:
e (Monotonicity) If ¢(A) C B for some ¢ € ASp(R*") then 2 (A) <
0, (B).
e (Conformality) 20, (A\A) = A2, (A).
e (Nontriviality) 20, (B*(r)) = 0.(Z*(r)) = 7r2.

The nontriviality axiom implies that 20}, is a two-dimensional invariant. It
is obvious from the monotonicity property that affine symplectomorphisms
preserve the linear symplectic width. We shall prove that this property in
fact characterizes symplectic and anti-symplectic linear maps.

Recall that an ellipsoid centered at 0 in the Euclidean space R?" is given by

2n
E = {(.Tl, N ,.TQn) S RQH‘ Z a7 < 1}
ij=1

where the 2n x 2n matrix (a;;) is symmetric positive definite. Define the
inner product

(u,v) a4 = (Au,v),

where (, ) is the canonical inner product on R**. Hence
ueFE < (u,u)s <1

Since A is symmetric positive definite there exists an orthonormal basis

(ug,...,us,) and a family or real numbers 0 < A\ < ... < Ay, such that
Au; = Nu; for i = 1,...,2n. So, if ® is the element of O(2n) which maps
the canonical basis of R* to (u1,. .., us,), we get
2n ZL‘2
> Y(E) = {(xl,...,x%) e R™| Zp—; < 1},
i=1 1"
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where p; = \/\; .

Symplectically an ellipsoid can be characterized as follows.

Lemma 2.4 Given any ellipsoid

2n
F = {(l’l,. .. ,l’gn) € R2n| Z Qi T < 1}

ij=1
there is a linear symplectomorphism ® € Sp(2n) such that

n

O(E)=E(r) =< (1, Tn,Y1,---,Yn) ER \ZTgl ,

7=1 J

for some n-uple r = (r,...,1,) with 0 < r; < ... < r,. Moreover, r is
entirely determined by E.

Proof. Since wy is nondegenerate there exists a skew-symmetric (with
respect to (, )4) nonsingular endomorphism J such that

wo(u,v) = (Ju,v) 4.

According to a classical result in linear algebra there exists an orthonormal

basis of ( , )a say (ui,...,upn,v1,...,0,) and a family of real number 0 <
a; < ...<a, such that, fori =1,... n,

Ju; = a;v; and  Jv; = —a;u;.
Fori=1,...,n, put v, = \/a; 'u; and v, = \/a; 'v;. Tt is easy to check that
(uy,...,u/ vf, ... v) is a symplectic basis of R?". Denote by ® the element

of Sp(2n) which maps the canonical basis to this basis. Now, we have

(u,uy 4 = wo(J u,u)

n

= > (wolJ ™ u, v)wo (g, w) — wol T~ u, 1w (v, w))
i=1
— i (wo( T~ v, wwo(Pey, u) — wo(J ™ uf, u)wo(Pen1, )
im1
(Lt it -+ ot wp@ens ) )
(a%(wo(@ei, w)wo(Pe;, u) + wo(Pepy1, u)wo(Peyi1, u)))
(w (woles, @ u)? 4 woleng, (I)_lu)Q)) ;
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and the first statement of the lemma follows.
To prove uniqueness of the n-uple r; < ... < r, consider the diagonal matrix

D(r) =diag(1/r%, ..., 1/r2, 1/r}, ..., 1/r2).
We must show that if there is a symplectic matrix ¢ such that
®TD(r)® = D(r)
then r = 7. Since Jo®T = ®~1J, the above identity is equivalent to
®1JyD(r)® = JoD(r').

Hence JoD(r) and JoD(r') have the same eigenvalues. But it is easy the
check that the eigenvalues of JoD(r) are 41/r%, ... 42/r2. This proves the
lemma. U

Remark 1 In the case n = 1 the existence statement of Lemma 2.4 asserts
that every ellipse in R? can be mapped into a circle by an area-preserving
linear transformation.

In view of Lemma 2.4 we define the symplectic spectrum of an ellipsoid
E to be the unique n-uple r = (rq,...,r,) with0 <7 < ... <r,such that F
is linearly symplectomorphic to E(r). The spectrum is invariant under linear
symplectomorphisms and, in fact, two ellipsoids in R, which are centered at
0, are linearly symplectomorphic if and only if they have the same spectrum.
Moreover, the volume of an ellipsoid E € R?" is given by

— CUZ _n 2
Vol(E) = T Hr
The following theorem characterizes the linear symplectic width of an ellip-
soid in terms of the spectrum.

Theorem 2.5 Let £ C R*™ an ellipsoid centered at 0. Then

W (E) = sup W(B) = ];rcleQHL(Z),

BCFE

where the supremum runs over all linear symplectic balls contained in E and
the infimum runs over all symplectic cylinders containing E. Moreover,

QHL(E) = WT?,

where r = (ry,...,ry,) is the symplectic spectrum associated to E.
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Proof. There exists a symplectic matrix ® € Sp(2n) such that ®F =
E(ry,...,m,). Hence

O 'B*(r)) CEC® 2% (ry)

and so

Inf 90,,(2) <7 < sup 2(B).
Now suppose that B is a linear symplectic ball of radius r contained in F.
Then ®B C ®F C Z?"(ry) and sor < r;. Similarly, if Z is a linear symplectic
cylinder or radius R containing E then B*"(r;) C ®E C ®Z and so r; < R.
Hence

sup W (B) < mr? < inf W (2).

BCE EcZ
Since 20, (E) = supgcp W (B) this prove the theorem. O

We finish this section by the following characterization of linear symplec-
tic or anti-symplectic maps.

Theorem 2.6 Let ® : R?® — R*" be a linear map. Then the following are
equivalent.

(1) @ preserves the linear width of ellipsoids centered at 0.

(13) The matriz ® is either symplectic or anti-symplectic, i.e., P*wy = Lwp.

Proof. We have seen that symplectic linear maps preserve the linear sym-
plectic width and it is easy to see that anti-symplectic linear maps do. Now
assume (7). We shall prove that ® has the nonsqueezing property. To see
this let B be a linear symplectic ball or radius » and Z be a linear symplectic
cylinder of radius R such that

®B C Z.

Then it follows from the monotonicity property of the linear symplectic width
that
7r? =W(B) = W, (PB) < W, (Z) = nR?

and hence r < R. Tt also follows from (i) that ® must be nonsingular because
otherwise the image of the unit ball under ® would have linear symplectic
width zero. Moreover, ®~! also satisfies (i) because

W, (O 'E) =W, (PP 'F) =W, (F)

for every ellipsoid E which is centered at zero. Thus we have proved that
both ® and ®~! have the nonsqueezing property and in view of Theorem 2.4
this implies that ® is either symplectic or anti-symplectic. O
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3 Symplectic manifolds and Hamiltonian flows

A symplectic structure on a manifold M is non-degenerate closed 2-form
w € N*(M), i.e., wis a differential 2-form such that:

1. for any z € M, (T, M,w,) is a symplectic vector space,

2. dw=0.

The couple (M, w) is called symplectic manifold.

Let (M,w) be symplectic manifold. The nondegeneracy implies to the ex-
istence of a canonical isomorphism between the tangent and the cotangent
bundle, namely,

Wi TM — TM : u— dw = w(u,.).

In particular, for any function H € C*°(M), there exists a unique vector field
denoted by Xy such that
iXHw =dH. (5)

The vector field Xy is called Hamiltonian vector field associated to H.
On the other hand, the nondegeneracy is equivalent to the fact that the
maximal form 2 = A"w is a volume form and hence any symplectic manifold
is orientable. A symplectomorphism of (M,w) is a diffeomorphism ¢ :
M — M such that ¢*w = w. We denote the group of symplectomorphisms
by Symp(M,w). A vector field X is called symplectic if its flow preserves
w, i.e., the Lie derivative of w is the direction of X. Note that according to
the Cartan’s formula
EXw = dixw + ixdw

and since dw = 0, X is symplectic if and only if ixw is closed. We denote
by X(M,w) the space of symplectic vector fields. It is obvious that any
Hamiltonian vector field is symplectic.

The next result shows that, when M is closed (compact without boundary),
X (M,w) is the Lie algebra of the group Symp(M,w).

Proposition 3.1 Let (M,w) be a closed symplectic manifold. Let (X;) be a
smooth family of vector fields on M and (¢;) € Diff (M) the smooth family
of diffeomorphisms generated by (X;) via

d .
agbt =X;0¢; and ¢o=id.

Then ¢, € Symp(M,w) for every t if and only if X, € X(M,w). Moreover,
if X,Y € X(M,w) [X,Y] € X(M,w) and

ixyw=dH where H=w(X,Y).
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Proof. The first statement follows from the relation
%qﬁjw = ¢; (dix,w + ix,dw) = ¢;dix,w.
On the other hand, the relations
Lixyw=LxoLyw—LyoLxw and ixyw=Lyixw+iyLxw
imply in a obvious way the second statement. O

Example 1 1. The standard model of a symplectic manifold is the Fu-
clidean space R*" endowed with its canonical symplectic form

Wy = i dl‘l VAN dyu
=1

where (T, ..., Tn, Y1, -, Yn) are the canonical linear coordinates of R*".

2. Any oriented surface S endowed with its area form is a symplectic man-
ifold. For instance the 2-sphere S* endowed with the 2-form

w((z,u), (z,v)) = (z,u x v)
is a symplectic manifold.

3. The canonical symplectic structure of the cotangent bundle.
Let L be a smooth manifold, consider T*L the total space of its cotan-
gent bundle and denote by w : T*L — L the canonical projection. The
Liouville form in T™* L is the differential 1-form X\ in T*L given by

MZa) = a(Tum(Za)),

where o € T*L and Z, € T,(T*L). Let (q1,...,qn) be a coordinates
system on L and (q1,...,qn,D1,---,Pn) the associated coordinates sys-

tem on T*L. Then .
A= Zpid%-
i=1

This relation implies that
d\ =Y dp; Adg;
i=1

and hence (T*L,d\) is a symplectic manifold. This symplectic structure
on T*L 1s called canonical.
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Darboux’s Theorem asserts that there is no local invariant in symplectic
geometry, more precisely, in a given dimension all symplectic forms are locally
diffeomorphic.

Theorem 3.1 Let (M,w) be a symplectic manifold and m € M. Then there
erists a coordinates system (xy,...,Tn, Y1, .., Yn) such that

w= zn:dxi A dy;.
i=1

Such coordinates are called Darboux’s coordinates.

Proof. According to Theorem 2.1 there is a coordinates system (g1, . .., Gn, P1, - - -
n

defined on an open set U containing m such that if w; = Z dg; N\ dp; then
i=1

w(m) = wi(m).
Moreover, since w; — wy is closed there exists o € QY(U) such that
do = wi — wp.

For ¢t > [0,1] put w; = w + tdo. Since w;(m) is nondegenerate and [0, 1]
is compact, we can choose U such that w; is nondegenerate on U for every
t > [0,1]. We consider now the family of vector fields (X;) defined by

ixtwt = —0

and @, the family of diffeomorphisms defined by

d .
aq)t = Xt @) (I)t and (I)O =id.

Since X;(m) = 0 for every t € [0,1] we can shrink U if necessary to get ®,
defined for every t € [0,1] and ®,(U) C U. Now

d d
aq)rwt = (I);k (awt + iXtdwt + ditht)

= &} (do —do) =0,
and hence ®jw; = w and the theorem follows. 0

A Hamiltonian system is a triple (M,w, H) where (M,w) is a sym-
plectic manifold and H a function on M. The Hamiltonian vector field Xy
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associated to H has a flow called Hamiltonian flow and its integral curves
are solution of

(t) = Xy (x(t)).

If (z1,..., %0, Y1, .,Yyn) are Darboux’s coordinates then this differential sys-
tem is equivalent to

. OH . 0H
T; = and Y; = — 5
8$‘Z’

Oy

i=1,...,n. (6)

Example 2 The harmonic oscillator is the Hamiltonian system (R?,wq, H)
with

1
H(x.y) = 1o+ 97)
The differential system (6) is written
r=vy and y=-—x

which equivalent to
T=y and I=—x.

The corresponding Hamiltonian flow is given by

Oy(x,y) = (xcost + ysint, —xsint + ycost).

4 The Hofer-Zehnder Capacity

In this final section we establish the existence of the Hofer-Zehnder capacity
and hence prove the Gromov’s nonsqueezing theorem. This capacity is based
on properties of the periodic orbits of Hamiltonian flows on a symplectic
manifold (M, w) and was introduced in [5].

Let (M,w) be a symplectic manifold. Denote the set of all nonnegative
Hamiltonian functions which are compactly supported on the interior of M
and which attain their maximum on some open set by

H(M) = {H € Cg°(intM)|H > 0, Hyy = sup H form some open set U } .
For every function H consider the time-independent Hamiltonian flow ¢4, €
Symp®(M,w) generated by the Hamiltonian vector field Xz. An orbit z(t) =
@Y, (t) is called T-periodic if z(t 4+ T) = x(t) for every ¢t € R. Call a function
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H € H(M) admissible if the corresponding Hamiltonian flow has no non-
constant T-periodic orbit with period 7" < 1. In other word, every noncon-
stant periodic orbit has period > 1. Denote the set of admissible Hamiltonian
functions by

Haa(M,w) ={H € H(M)| H admissible} .

The following lemma shows that for every Hamiltonian function H € H (M)
the function eH is admissible for € > 0 sufficiently small. Roughly speaking,
if a vector field is small then its orbits are slow and hence the period is long.

Lemma 4.1 Let x(t) = x(t +7T) € R™ be a periodic solution of the differen-
tial equation

#(t) = (),

where f: R™ — R™ s continuously differentiable. If

T.sup [[df (z)[| <1

then x(t) is constant.

Proof. Since z(0) = z(T") an easy calculation shows that

i(t) = /Ot 2 i(s)ds + /tT = Li(s)ds.

This implies
T
i(t)] < / i(s)|ds < VT o
0

and hence
]|z < T2 Lo

Note denote ¢ = sup ||df (x)|| and note that
|Z] < [[df () [|.]2] < e|2].

Hence
2|2 < €ll@||ze < €T'(| 2] Lo

Since €' < 1 it follows Z(t) = 0. Hence 4(t) is constant and periodic and
hence z(t) is constant. O

The Hofer-Zehnder capacity of (M, w) is defined by

crz(M,w)= sup [ H]
HeH g (M,w)
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where ||H|| is the Hofer norm given by
H| = H(x) — inf H(x).
|#1l = sup H(z) — inf H(z)

One can deduce easily from Lemma 4.1 that for every nonempty symplec-
tic manifold (M, w), cgz(M,w) > 0.
The following theorem is due to Hofer and Zehnder [5].

Theorem 4.1 The map (M,w) — cpz(M,w) satisfies the monotonicity,
conformality and normalization axioms of symplectic capacity. Moreover,

CHz(BQn(T),WQ) = CHz(Zzn(’I"),wO) = 7T7"2
for every r > 0.

The proof of this theorem rests on the following existence result for periodic
orbits of Hamiltonian differential equation in R?"” which a proof will be given
in the last section.

Theorem 4.2 Assume H € H(Z**(1)) with sup H > . Then the Hamilto-
nian flow of H has a nonconstant periodic orbit of period 1.

Proof of Theorem 4.1.

e Monotonicity. Let ¢ : (M;,w;) — (M, ws) be a symplectic embed-
ding with dim M; = dim M,. If H; : M; — R is a compactly sup-
ported function then there is a unique compactly supported function
Hj : My — R such that H, vanishes on My — ¢(M;) and Hy = Hy 0 ¢.
Since H; is compactly supported the function Hy is smooth. Since
¢ intertwine the Hamiltonian flows of H; et Hy there is a one-to-one
correspondence of nonconstant periodic orbits of these flow. Hence

CHZ<M17W1) = sup HH1H
Hy€Haq(M1,w1)

= sup || Hyl
HyeH,q(Mg,wg)
supp(H2)Co(My)

CHZ(M2>W2)-

IA

This proves monotonicity.

e Conformality. Since the Hamiltonian vector field of H with respect
to w agree with the Hamiltonian field of AH with respect to Aw and
hence

Hoa(M, \w) = {\H|H € Haa(M,w)}

and conformality follows.
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e Non triviality. We shall now prove the inequality ¢gz(B?"(1),wq) >
7. Let € > 0 and choose a smooth function f : [0, 1] — R such that

Vr, —m < f'(r) <0, f(r) =7—¢, forrnear 0 and f(r) =0 for r near 1.

Define H(z) = f(|z|?) for z € B*(1). Then H € H(B*") and ||H|| =
m — €. We must prove now that H is admissible. But the orbits of the
Hamiltonian flow are easy to calculate explicitly. According to (6), the
Hamiltonian differential equation of H is of the form

g =2f(z]")y and §=—=2f"(*)z

and it follows that r = |2(t)|? is constant along the solutions. In com-
plex notation z = x + 1y the solutions are z(t) = exp(—2uf'(r)t)zy and
are all periodic. They are nonconstant whenever f’(r) # 0 and in this
case th period is T' = % > 1. Hence for every ¢ > 0 there is an
admissible Hamiltonian function H € H(B*") with ||[H| = 7 — € and
this proves the inequality

CHz(an(]_), CUO) Z .

Now Theorem 4.2 asserts that for every H € H(Z*"(1)) with ||H|| > =
the corresponding Hamiltonian flow has nonconstant periodic orbit of
period 1. Hence any such function is not admissible and this implies

crz(Z7(1),wo) < 7.
By the monotonicity axiom we have
crz(B*(1),wo) = cuz(Z22"(1),wp) = 7
and this proves the theorem. O]

We shall now restrict the discussion to subsets of R?*®. These subsets
are not required to be open, i.e, they are not required to be manifolds. A
symplectic embedding ¢ : A — R?" defined on an arbitrary subset A C R*"
is by definition a map which extends to a symplectic embedding of an open
neighborhood of A. Now a symplectic capacity ¢ on R*" assigns a number
c¢(A) € [0, 00] to every subset A C R?*™ such that the following holds:

e (Monotonicity) If there is a symplectomorphism ¢ of R?*" such that
®(A) C B then ¢(A) < ¢(B).

e (Conformality) c(AA) = \%c(A).
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e (Non triviality) ¢(B**(1)) > 0 and ¢(Z?"(1)) < co.
For every subset A C R*" define
e (A) = sup {7r?*|B*"(r) embeds symplectically inA}

and
g(A) = inf {7rr2\A embeds symplectically inZ2”(r)}

It follows again from Gromov’s nonsqueezing theorem that rwg(A) and wg
satisfy the axioms of a symplectic capacity on R?". If ¢ is any other capacity
on R?" we have

mg(A) < C(A) < EG'(A), (7)

for every subset A € R?",

Example 3 Recall from Lemma 2.4 that given any ellipsoid

2n
FE = {({L‘l,. .. ,ZL‘Qn) S R2n| Z Qi3 X325 S ]_}

ij=1
there is a linear symplectomorphism ® € Sp(2n) such that

n

@(E):E(’I"): (xl,...,xn,yl,...,yn)GR |ZT§1 s

j=1
for some n-uple r = (r1,...,1,) with 0 < r; < ... < r,. Moreover, r is
entirely determined by E. Since

B*(r)) C ®E C Z*(r))

it follows that
¢(E) =712 = (E)

for every symplectic capacity ¢ which satisfies (1). Here vy, denotes the linear
symplectic width and the last equation follows from Theorem 2.5.

A symplectomorphism of a symplectic manifold (M, w) is a diffeomor-
phism ¢ such that ¢*w = w. This definition involves the first derivatives of ¢
and so cannot be generalized in an obvious way to homeomorphisms. This in
contrast to the volume-preserving case: a diffeomorphism preserves a volume
form if and only if it preserves the corresponding measure. Eliasberg in [3, 4]
and, independently, Ekeland-Hofer in [2| realized that one can use capacities
in a similar way to give an alternative definition of a symplectomorphism
which does not involve derivatives. Their observation is summarized in the
following proposition.
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Proposition 4.1 Let ¢ : R?" — R?" be a diffeomorphism and ¢ be a sym-
plectic capacity which satisfies (1). Then the following are equivalent.

(1) ¢ preserves the capacity if ellipsoids, i.e., c(¢(F)) = ¢(E) for every ellip-
soids E in R®™.

(17) ¢ is either a symplectomorphism or anti-symplectomorphism, i.e., ¢*w =
+w.

Here we consider ellipsoids with arbitrary center. It follows from the
definition of a symplectic capacity that every symplectomorphism and ev-
ery anti-symplectomorphism preserves the symplectic capacity of ellipsoids.
For anti-symplectomorphism one needs the additional elementary fact that
for every ellipsoid there exists an anti-symplectomorphism which maps this
ellipsoid to itself. In Theorem 2.6 we have shown that, conversely, every
linear map which preserves the linear symplectic width of ellipsoids is either
symplectic or anti-symplectic. Proposition 4.1 is the nonlinear version of this
result. The proof is elementary. The only deep observation is the existence
of a symplectic capacity. The proof is based on the following lemma.

Lemma 4.2 Let ¢, : R?® — R?" a sequence of homeomorphisms converg-
ing to a homeomorphism ¢; R** — R*™, uniformly on compact sets. Assume
that ¢,, preserves the capacity of ellipsoids for every m. Then ¢ preserves
the capacity of ellipsoids.

Proof. without loss of generality we consider only ellipsoids centered at zero.
We first prove that for every ellipsoids F and every positive number A < 1
there exists a mg > 0 such that for every m > mq

Om(AE) C §(E) C on(A'E). (8)

To see this, abbreviate f,, = ¢! o ¢,,. Then f,, and f,.! converges to the
identity, uniformly on compact sets. So the inclusions f,,(AF) C E and
[-YAE) C E are obvious for large m and (8) follows. This equation now
implies that

N2e(B) < o(0(E)) < A"%(E).
Since A < 0 was chosen arbitrarily close to 1 it follows that ¢ preserves the
capacity of ellipsoids. O

Proof of Proposition 4.1. Assume (7). Then the maps

6(z) = 70(12)

are diffeomorphisms of R?” which preserve the capacity of ellipsoids and they
converge, uniformly on compact sets the the linear map ® = d¢(0). Hence
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by Lemma 4.2, ® preserves the capacity of ellipsoids. We have shown (cf.
Example 3) that the capacity of ellipsoids agrees with its symplectic width.
It follows from Theorem 2.6 that ®*wy = F+wy. The same holds when @ is
replaced by d¢(z) for any z € R?" and, by continuity, the sign is independent,
of z. Thus we have proved that (i) implies (i7). The converse is obvious. [

Proposition 4.1 gives rise to the definition of a symplectic homeomor-

phism. Let n be odd. Then an orientation-preserving homeomorphism ¢ of
R?" is said to be symplectic if, for some capacity ¢ on subset of R?", and all
sufficiently small ellipsoids E we have ¢(c(E)) = ¢(E). If n is even, ¢ is said
to be symplectic if the homeomorphism ¢ x id of R?"*2 satisfies the previous
conditions.
One can translate this definition to an arbitrary symplectic manifold using
Darboux’s theorem. But they are many open questions. For example, if
¢ preserves the capacity of all small ellipsoids, mus it also preserve the ca-
pacity of large ellipsoids? Must these symplectic homeomorphisms preserve
volume?
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