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etta14-09-2011Abstra
tThis 
ourse is an introdu
tion to symple
ti
 topology via the sur-prising Gromov's nonsqueezing theorem. This theorem assert that ifthere is a symple
ti
 embedding whi
h maps the ball B2n(0, r) intothe 
ylinder B2(0, R) × R
2(n−1) then r ≤ R. The �rst 
ourse will bedevoted to the introdu
tion of some elementary properties of symple
-ti
 ve
tor spa
es and the proof of a�ne nonsqueezing theorem andthe introdu
tion of the linear symple
ti
 width. The se
ond 
oursewill be devoted to the introdu
tion of symple
ti
 manifolds and someof their immediate properties, namely, we will prove Darboux's theo-rem. In the last 
ourse, we will prove that the nonsqueezing theoremis equivalent to the existen
e of symple
ti
 
apa
ities and we will de-�ne the Hofer-Zehnder 
apa
ity and then prove Gromov's theorem.Finally, by using symple
ti
 
apa
ity we give a de�nition of symple
-ti
 homeomorphisms as a generalization of symple
ti
 di�eomorphismsand hen
e give rise to symple
ti
 topology.1 Introdu
tionA symple
ti
 manifold is a smooth manifold (M,ω) (eventually with aboundary) endowed with a 
losed nondegenerate di�erential 2-form ω. Asmooth map F : (M1, ω1) −→ (M2, ω2) between two symple
ti
 manifolds is
alled symple
ti
 if F ∗ω2 = ω1.The standard model of a symple
ti
 manifold is the Eu
lidean spa
e R

2nendowed with its 
anoni
al symple
ti
 form
ω0 =

n∑

i=1

dxi ∧ dyi,1



where (x1, . . . , xn, y1, . . . , yn) are the 
anoni
al linear 
oordinates of R
2n. Asymple
tomorphism of (R2n, ω0) is a di�eomorphism F : R

2n −→ R
2nsu
h that F ∗ω0 = ω0. It is obvious that a symple
tomorphism F is alsoa preserving-volume di�eomorphism sin
e F ∗Ω = Ω where Ω = ∧nω0 is avolume form asso
iated to ω0. Long time ago, many people used to believethat whatever 
ould be done with a preserving-volume di�eomorphism 
ouldbe done by a symple
tomorphism (
alled 
anoni
al transformation byphysi
ists). This belief was supported by the 
ase n = 1 where both notionsin fa
t 
oin
ide. When some people began to suspe
t that the group ofsymple
tomorphisms is signi�
antly smaller than the group of preserving-volume di�eomorphism there was no result to pinpoint the di�eren
e untilGromov proved his 
elebrated nonsqueezing theorem in 1985. This says thatthe standard 
losed symple
ti
 ball 
annot be symple
ti
ally embedded intoa thin 
ylinder.More pre
isely, the symple
ti
 
ylinder of radius R > 0 is

Z2n(R) =
{
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n, x2
1 + y21 ≤ R2

}
≃ B2(R)× R

2n−2.We denote the Eu
lidean 
losed ball of 
enter 0 and the radius r in R
2n by

B2n(r).

Theorem 1.1 If there is a symple
ti
 embedding F : B2n(r) →֒ Z2n(R) then
r ≤ R.The Gromov's original proof used J-holomorphi
 
urves [6℄. In this 
oursewe give another proof of this theorem using the notion of symple
ti
 
apa
ity,namely, the symple
ti
 
apa
ity introdu
ed by Hofer-Zehnder in [5℄. Indeed,2



Gromov's nonsqueezing theorem gave rise to the following de�nition whi
h isdue to Ekeland and Hofer [2℄. A symple
ti
 
apa
ity is a fun
tor c whi
hassigns to every symple
ti
 manifold (M,ω) a nonnegative (possibly in�nite)number c(M,ω) and satis�es the following 
onditions.
• (Monotoni
ity) If there is a symple
ti
 embedding (M1, ω1) →֒ (M2, ω2)and dimM1 = dimM2 then c(M1, ω1) ≤ c(M2, ω2).
• (Conformality) c(M,λω) = |λ|c(M,ω).
• (Non triviality) c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) < ∞.The key to understanding symple
ti
 
apa
ities is the observation that thenon triviality axiom makes it impossible for the volume ofM to be a 
apa
ity.The requirement that c(Z2n(1), ω0) be �nite means that these 
apa
ities are2-dimensional invariants.The existen
e of symple
ti
 
apa
ities is non trivial. In fa
t, we have thefollowing proposition.Proposition 1.1 The existen
e of a symple
ti
 
apa
ity c satisfying

c(B2n(1), ω0) = c(Z2n(1), ω0) = π (1)is equivalent to Gromov's nonsqueezing theorem.Proof. Suppose that there is a symple
ti
 
apa
ity satisfying (1) and sup-pose that there exists a symple
ti
 embedding (B2n(r), ω0) →֒ (Z2n(R), ω0).The monotoni
ity axiom implies
c(B2n(r), ω0) ≤ c(Z2n(R), ω0).Now it is easy to see that we have the following symple
ti
 equivalen
es:

(B2n(r), ω0) ≃ (B2n(1), r2ω0) and (Z2n(R), ω0) ≃ (Z2n(1), R2ω0).By the normality axiom we get that r2 ≤ R2 and the Gromov's nonsqueezingtheorem follows.Conversely, suppose that the Gromov's nonsqueezing theorem holds. For anysymple
ti
 2n-dimensional manifold (M,ω), put
cG(M,ω) = sup E(M,ω),where

E(M,ω) =
{
πr2| (B2n(r), ω0) embeds symple
ti
ally in M

}
.3



Let us show that cG is a symple
ti
 
apa
ity satisfying (1). It is 
alledGromov width.A

ording to Darboux's theorem (see Theorem 3.1), there exists always asymple
ti
 embedding of a 
losed symple
ti
 ball (B2n(r), ω0) in (M,ω) andhen
e cG(M,ω) is well-de�ned.Suppose that there is a symple
ti
 embedding (M1, ω1) →֒ (M2, ω2) and
dimM1 = dimM2. Then

E(M1, ω1) ⊂ E(M2, ω2)and hen
e cG(M1, ω1) ≤ cG(M2, ω2).On the other hand, we have for any λ 6= 0,
E(M,λω) =

{
|λ|πr2| (B2n(r), ω0) embeds symple
ti
ally in (M,ω)

}and hen
e cG(M,λω) = |λ|cG(M,ω).Now it is obvious that cG(B2n(r), ω0) = πr2. Moreover, the in
lusion
(B2n(R), ω0) →֒ (Z2n(R), ω0)is a symple
ti
 embedding and hen
e cG(Z

2n(R), ω0) ≥ πR2. On the otherhand, if
(B2n(r), ω0) →֒ (Z2n(R), ω0)is a symple
ti
 embedding then a

ording to Gromov's nonsqueezing theorem

r ≤ R and hen
e cG(Z
2n(R), ω0) ≤ πR2. Finally,

cG(Z
2n(R), ω0) = πR2,and the proposition follows. �2 A�ne nonsqueezing theorem2.1 Symple
ti
 ve
tor spa
esLet (e1, . . . , e2n) denote the 
anoni
al basis of R2n. The bilinear skew-symmetri
2-form

ω0 =

n∑

i=1

e∗i ∧ e∗i+nis non-degenerate, i.e.,
ω0(u, v) = 0 ∀v ∈ R

2n =⇒ u = 0.4



The 
ouple (R2n, ω0) is the standard example of symple
ti
 ve
tor spa
e.More generally, a symple
ti
 ve
tor spa
e is a 
ouple (V, ω) where V is�nite dimensional R-ve
tor spa
e and ω is a bilinear skew-symmetri
 2-formon V whi
h is nondegenerate. This means that ω satis�es:1. ω is bilinear;2. for any u, v ∈ V , ω(u, v) = −ω(v, u);3. for any u ∈ V ,
ω(u, v) = 0 ∀v ∈ V =⇒ u = 0.A symple
ti
 ve
tor spa
e must be even dimensional. Indeed, if (V, ω) isa symple
ti
 ve
tor spa
e and (u1, . . . , un) is a basis of V , then the non-degenera
y of ω is equivalent to the fa
t that the matrix (ω(ui, uj))

n

i,j=1 isinvertible. Sin
e a skew-symmetri
 odd dimensional real matrix must havevanishing determinant we dedu
e that n is even.Let (V, ω) be a symple
ti
 ve
tor.
• A linear symple
tomorphism of V is a ve
tor spa
e isomorphism
Φ : V −→ V whi
h preserves the symple
ti
 form ω, i.e., for any
u, v ∈ V ,

Φ∗ω(u, v) := ω(Φu,Φv) = ω(u, v).The linear symple
tomorphisms of (V, ω) form a group whi
h we denoteby Sp(V, ω). In the 
ase of the standard symple
ti
 stru
ture on R
2n,we denote Sp(2n) = Sp(R2n, ω0).

• Let W ⊂ V be a ve
tor subspa
e. The symple
ti
 orthogonal of Wis the ve
tor spa
e
W ω = {u ∈ V, ω(u, v) = 0 ∀v ∈ W} .Proposition 2.1 We have

dimW ω + dimW = dimV and (W ω)ω = W.Proof. We de�ne ı : V −→ V ∗ by putting
ı(v) = ω(v, .),5



where ω(v, .) : V −→ R, u 7→ ω(v, u). The nondegenera
y of ω is equivalentto the fa
t that ı is bije
tive and we have ı(W ω) = W 0 where W 0 is theannihilator of W , i.e.,
W 0 = {α ∈ V ∗, α(W ) = 0} .Now, it is well-known that dimW 0 = dimV − dimW and the �rst formulafollows.It is obvious that W ⊂ (W ω)ω and a

ording to the �rst formula we have

dimW = dim(W ω)ω and hen
e (W ω)ω = W . �A ve
tor subspa
e W of V is 
alled isotropi
 if W ⊂ W ω, 
oisotropi
 if
W ω ⊂ W , symple
ti
 if W ∩W ω = {0}, Lagrangian if W = W ω.The following theorem is the main result of this subse
tion. It asserts thatall symple
ti
 ve
tor spa
es of the same dimension are symple
tomorphi
.Theorem 2.1 Let (V, ω) be a symple
ti
 ve
tor spa
e of dimension 2n. Thenthere exists a basis (e1, . . . , en, ē1, . . . , ēn) su
h that

ω(ei, ej) = ω(ēi, ēj) = 0 and ω(ei, ēj) = δij.Su
h a basis is 
alled a symple
ti
 basis. Moreover, there exists a ve
torspa
e isomorphism Φ : R2n −→ V su
h that
Φ∗ω = ω0.Proof. By indu
tion over n. If n = 1, there exists obviously two ve
tors e, ēsu
h that ω(e, ē) = 1 and hen
e (e, ē) is the desired basis.Suppose that the result holds for n. Let (V, ω) be a 2n + 2-dimensionalsymple
ti
 ve
tor spa
e. Sin
e ω is nondegenerate there exists two ve
tors

e1, ē1 su
h that ω(e1, ē1) = 1. These ve
tors are linearly independent andspan a 2-dimensional ve
tor subspa
e W . Let us show that W is a symple
ti
ve
tor subspa
e. Indeed, if u ∈ W ∩W ω then u = ae1 + bē1,
0 = ω(u, e1) = −b and 0 = ω(u, ē1) = a.Hen
e u = 0. Thus, a

ording to Proposition 2.1,

V = W ⊕W ω,and moreover (W ω, ω) is symple
ti
 ve
tor spa
e. By indu
tion hypothe-sis, there exists a symple
ti
 basis of W ω (e2, . . . , en, ē2, . . . , ēn). Finally,
(e1, . . . , en, ē1, . . . , ēn) is symple
ti
 basis of V .The isomorphism Φ : R2n −→ V given by

Φ(x1, . . . , xn, y1, . . . , yn) =

n∑

i=1

(xiei + yiēi)6



satis�es Φ∗ω = ω0. �The volume form asso
iated to a symple
ti
 ve
tor spa
e (V, ω) is the
2n-form given by

Ω = ωn =

n
︷ ︸︸ ︷
ω ∧ . . . ∧ ω .Note that Ω 6= 0 and, more pre
isely, if (e1, . . . , en, ē1, . . . , ēn) is a symple
ti
basis then

Ω = n! (e∗1 ∧ ē∗1 ∧ . . . ∧ e∗n ∧ ē∗n) .2.2 Linear symple
ti
 groupIn this subse
tion, we study the linear symple
tomorphism group of a sym-ple
ti
 ve
tor spa
e in more detail. A

ording to Theorem 2.1 it su�
es tostudy the symple
tomorphism group of (R2n, ω0). Let B0 be the 
anoni
albasis of R2n and 〈 , 〉 the Eu
lidean inner produ
t of R2n. The matrix of ω0in B0 is the matrix
J0 =

(
0 In

−In 0

)

.We have obviously J20 = −I2n,
〈J0u, J0v〉 = 〈u, v〉 and ω0(u, v) = 〈J0u, v〉. (2)It is easy to 
he
k that an isomorphism of R2n is a linear symple
tomor-phism i� its matrix Φ in B0 satis�es

ΦTJ0Φ = J0. (3)So we 
an identify Sp(2n) to the spa
e of 2n×2n-matri
es whi
h satisfy (3).If we write a 2n× 2n-matrix Φ as
Φ =

(
A B
C D

)

,where A,B,C and D are real n× n-matri
es. It is straightforward to 
he
kthat Φ satis�es (3) i�
ATC = CTA, BTD = DTB and ATD − CTB = In. (4)Note �rst that a linear symple
tomorphism preserves the volume form andhen
e its determinant is equal to 1. Thus
Sp(2n) ⊂ SL(2n,R) := {Φ ∈ GL(2n,R), det Φ = 1} .7



Note also that, a

ording to (3), Φ ∈ Sp(2n) i� ΦT ∈ Sp(2n).We identify GL(n,C) with a subgroup of GL(2n,R) as follows
X + ıY ∈ GL(n,C) 7→

(
X −Y
Y X

)

∈ GL(2n,R).With this identi�
ation in mind, one 
an see easily that
GL(n,C) = {Φ ∈ GL(2n,R),ΦJ0 = J0Φ} .The unitary group is identi�ed to

U(n) =

{(
X −Y
Y X

)

∈ GL(n,C), (X + ıY )(X − ıY )T = In

}

.Lemma 2.1 We have
Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n).Proof. Let Φ be a 2n× 2n real matrix. We have the following equivalen
e:

Φ ∈ GL(n,C) ⇐⇒ ΦJ0 = J0Φ,

Φ ∈ Sp(2n) ⇐⇒ ΦTJ0Φ = J0,

Φ ∈ O(2n) ⇐⇒ ΦTΦ = I2n.It is obvious that any of these 
onditions imply the third. Now, a

ording to(4), the subgroup Sp(2n) ∩GL(n,C) 
onsists of this matrix
Φ =

(
X −Y
Y X

)

∈ GL(2n,R)whi
h satisfy
XTY = Y TX and XTX + Y TY = In.This is pre
isely the 
ondition

(X + ıY )(X − ıY )T = In.

�For any Φ ∈ GL(2n,R) we denote by σ(Φ) ⊂ C the set of zeros of the
hara
teristi
 polynomial asso
iated to Φ, i.e.,
λ ∈ σ(Φ) ⇐⇒ det(Φ− λI2n) = 0.For any λ ∈ σ(Φ) we denote by m(λ) the multipli
ity of λ as a zero of the
hara
teristi
 polynomial. Note that

σ(Φ) = σ(ΦT) and σ(Φ−1) =
{
λ−1, λ ∈ σ(Φ)

}
.8



Lemma 2.2 Let Φ ∈ Sp(2n). Then:1. σ(Φ) = σ(Φ−1).2. If ±1 ∈ σ(Φ) then it o

urs with even multipli
ity.Moreover,
Φz = αz, Φz′ = λ′z, λλ′ 6= 1 =⇒ ω0(z, z

′).Proof. Sin
e J20 = −I2n, we get from (3)
ΦT = J0Φ

−1J−1
0and hen
e

σ(Φ−1) = σ(ΦT) = σ(Φ).From this relation, we dedu
e that
∑

λ∈σ(Φ),λ6=±1

m(λ) = 2pwith p ∈ N. On the other hand, sin
e
1 = detΦ =

∏

λ∈σ(Φ)

λm(α)we dedu
e that if −1 ∈ σ(Φ) then m(−1) is even. Moreover, sin
e the degreeof the 
hara
teristi
 polynomial is even the eigenvalue 1 o

urs with evenmultipli
ity as well.The last statement follows from the identity
ω0(Φz,Φz

′) = ω0(z, z
′) = λλ′ω0(z, z

′).

�Let P ∈ GL(2n,R) symmetri
 and positive de�nite. Then P is diagonal-izable in an orthonormal basis, i.e., there exists a matrix Q ∈ O(2n) su
hthat
P = Q








λ1 0 . . . 0

0
. . . ...... . . . 0

0 . . . 0 λ2n








QT,9



where 0 < λ1 ≤ . . . ≤ λ2n. For any real number α > 0 put
P α = Q








λα
1 0 . . . 0

0
. . . ...... . . . 0

0 . . . 0 λα
2n








QT.It is an easy exer
ise to show that P α does not depends on Q.Lemma 2.3 If P = PT ∈ Sp(2n) is symmetri
, positive de�nite symple
ti
matrix then P α ∈ Sp(2n) for any real number α > 0.Proof. We will show that, for any z, z′ ∈ R
2n,

ω0(P
αz, P αz′) = ω(z, z′). (∗)First, denote by 0 < λ1 < . . . < λr the di�erent eigenvalues of P and

Vλ1, . . . , Vλr
the 
orresponding eigenspa
es. We have

R
2n = Vλ1 ⊕ . . .⊕ Vλr

.We distinguish two 
ases:
• z ∈ Vλi

, z′ ∈ Vλj
and λiλj 6= 1. Then P αz = λα

i z and P αz′ = λα
j z

′ anda

ording to Lemma 2.2 ω0(z, z
′) = 0 and (∗) holds.

• z ∈ Vλi
, z′ ∈ Vλj

and λiλj = 1. Then P αz = λα
i z, P αz′ = λα

j z
′ and (∗)holds. �Let us re
all the polar de
omposition of the linear group GL(n,R).Theorem 2.2 Let A ∈ GL(n,R). Then there exists an unique 
ouple (O, S)su
h that

A = SO,where O ∈ O(n) and S is symmetri
, positive de�nite.Proposition 2.2 The unitary group U(n) is a maximal 
ompa
t subgroup of
Sp(2n) and the quotient Sp(2n)/U(n) is 
ontra
tible.Proof. First let us prove that the quotient Sp(2n)/U(n) is 
ontra
tible.Now, a

ording to Theorem 2.2, every matrix Φ ∈ Sp(2n) 
an be uniquelyde
omposed as

Φ = SO10



where S is symmetri
 and positive de�nite and O is orthogonal. By thepre
eding lemma
S = (ΦΦT)

1
2 ∈ Sp(2n)and hen
e

O = S−1Φ ∈ Sp(2n) ∩O(2n)
Lemma 2.1

= U(n).Thus the map
Sp(2n)× [0, 1] −→ Sp(2n) : (Φ, t) 7→ (ΦΦT)−

t
2Φis a retra
tion of Sp(2n) onto U(n).To see that U(n) is a maximal 
ompa
t subgroup, let G ⊂ Sp(2n) beany 
ompa
t subgroup. We must show that G is 
onjugate to a subgroup of

U(n). Wed de�ne P ∈ Sp(2n) by
P =

∫

G

gTgdgwhere dg is the Haar measure of G. It is obvious that P is symmetri
 andpositive de�nite. Moreover, we have, for any Φ ∈ G,
ΦTPΦ = ΦT

(∫

G

gTgdg

)

Φ

=

∫

G

(gΦ)T(gφ)dg

= P.Sin
e P
1
2 is a symple
ti
 matrix we obtain
Φ ∈ G =⇒ P

1
2ΦP− 1

2 ∈ Sp(2n) ∩O(2n)
Lemma 2.1

= U(n).This proves the proposition. �2.3 The a�ne nonsqueezing theoremAn a�ne symple
tomorphism of R
2n is a map φ : R

2n −→ R
2n of theformula

φ(z) = Φz + z0,where Φ ∈ Sp(2n) and z0 ∈ R
2n. We denote by ASp(2n) the group ofa�ne symple
tomorphisms. The a�ne nonsqueezing theorem asserts thata ball in R

2n 
an only be embedded into a symple
ti
 
ylinder by an a�ne11



symple
tomorphism if it has a smaller radius. The symple
ti
 
ylinder ofradius R > 0 is
Z2n(R) =

{
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n, x2
1 + y21 ≤ R2

}
≃ B2(R)× R

2n−2.We denote the Eu
lidean 
losed ball of 
enter 0 and the radius r in R
2n by

B2n(r).Theorem 2.3 Let φ ∈ ASp(2n) and assume that φ(B2n(r)) ⊂ Z2n(R).Then r ≤ R.Proof. Write φ(z) = Φ(z)+z0 with Φ ∈ Sp(2n) and z0 ∈ R
2n and denoteby (e1, . . . , e2n) the 
anoni
al basis of R2n. The 
ondition φ(B2n(r)) ⊂ Z2n(R)is equivalent to

∀u ∈ B2n(r), ((Φ(u))1 + z10)
2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2. (∗)Now it is easy to see that
(Φ(u))1 = 〈ΦTe1, u〉 and (Φ(u))n+1 = 〈ΦTen+1, u〉.The 
ru
ial point is that sin
e ΦT ∈ Sp(2n),

ω0(Φ
Te1,Φ

Ten+1) = ω0(e1, en+1) = 1.So, by using (2) and the Cau
hy-S
hwarz inequality, we get
1 = ω0(Φ

Te1,Φ
Ten+1) ≤ |ΦTe1||ΦTen+1|.This inequality implies that either |ΦTe1| or |ΦTen+1| is greater than or equalto one. Assume without loss of generality that |ΦTe1| ≥ 1 and 
hoose in (∗)

u = ǫr ΦTe1
|ΦTe1|

where ǫ is the sign of z10 . We get
r2 ≤ (r|ΦTe1|+ |z10 |)2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2,and the theorem follows. �The nonsqueezing property 
hara
terizes in fa
t linear symple
tomor-phisms. We 
all a subset A ⊂ R
2n a linear symple
ti
 ball of radius

r if there exists Φ ∈ Sp(2n) su
h that A = Φ(B2n(r)). It results that A and
B2n(r) must have the same volume and hen
e r does not depend on Φ. Ina similar way, a subset Z ∈ R

2n is 
alled linear symple
ti
 
ylinder ifthere exists Φ ∈ Sp(2n) and r > 0 su
h that Z = Φ(Z2n(r)). It follows from12



Theorem 2.3 that for any linear symple
ti
 
ylinder Z the number r > 0 is alinear symple
ti
 invariant. Indeed, suppose that
Z = Φ1(Z

2n(r1)) = Φ2(Z
2n(r2))with Φ1,Φ2 ∈ Sp(2n). Sin
e B2n(r1) ⊂ Z2n(r1) we dedu
e that

Φ−1
2 Φ1(B

2n(r1)) ⊂ Z2n(r2)and by Theorem 2.3 r1 ≤ r2. A similar argument gives r2 ≤ r1 and hen
e
r1 = r2.A nonsingular 2n × 2n matrix Φ is said to have the linear nonsqueezingproperty if for every linear symple
ti
 ball B of radius r and every linearsymple
ti
 
ylinder Z of radius R we have

Φ(B) ⊂ Z =⇒ r ≤ R.The following theorem shows that linear symple
tomorphisms are 
hara
-terized by the linear nonsqueezing property. More pre
isely, we must alsoin
lude the 
ase of anti-symple
ti
 matri
es Φ whi
h satisfy Φ∗ω0 = −ω0.Theorem 2.4 Let Φ be a non singular 2n × 2n matrix su
h that Φ and
Φ−1 have the linear nonsqueezing property. Then Φ is either symple
ti
 oranti-symple
ti
.Proof. Assume that Φ is neither symple
ti
 nor anti-symple
ti
. Thenneither is ΦT and so, by a density argument, there exists ve
tor u, v ∈ R

2nsu
h that
ω0(Φ

Tu,ΦTv) 6= ±ω0(u, v).Perturbing u and v slightly, and using the fa
t that Φ is nonsingular, weway assume that ω0(u, v) 6= 0 and ω0(Φ
Tu,ΦTv) 6= 0. Moreover, repla
ing Φby Φ−1 if ne
essary, we may assume that ω0(Φ

Tu,ΦTv) < ω0(u, v). Now, byres
aling u if ne
essary, we obtain
0 < λ2 = ω0(Φ

Tu,ΦTv) < ω0(u, v) = 1.Hen
e there exist symple
ti
 bases (u1, v1, . . . , un, vn) and (u′
1, v

′
1, . . . , u

′
n, v

′
n)of R2n su
h that

u1 = u, v1 = v, u′
1 = λ−1ΦTu, v′1 = ±λ−1ΦTv.Denote by Ψ ∈ Sp(2n) (resp. Ψ′ ∈ Sp(2n)) the matrix whi
h maps the 
anon-i
al basis of R

2n to (u1, . . . , un, v1, . . . , vn) (resp. (u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n)).Then the matrix

A = Ψ′−1ΦTΨ13



satis�es
Ae1 = λe1 and Af1 = ±λf1.This implies that the transposed matrix AT maps the unit ball B2n(1) to
ylinder Z2n(λ). But sin
e λ < 1 this means that Φ does not have thenonsqueezing property in 
ontradi
tion to our assumption. This proves thetheorem. �The a�ne nonsqueezing theorem gives rise to the notion of the linearsymple
ti
 width of an arbitrary subset A ⊂ R

2n, de�ned by
WL(A) = sup

{
πr2| φ(B2n(r)) ⊂ A for some φ ∈ ASp(R2n)

}
.It follows from Theorem 2.3 that the linear symple
ti
 width has the followingproperties:

• (Monotoni
ity) If φ(A) ⊂ B for some φ ∈ ASp(R2n) then WL(A) ≤
WL(B).

• (Conformality) WL(λA) = λ2
WL(A).

• (Nontriviality) WL(B
2n(r)) = WL(Z

2n(r)) = πr2.The nontriviality axiom implies that WL is a two-dimensional invariant. Itis obvious from the monotoni
ity property that a�ne symple
tomorphismspreserve the linear symple
ti
 width. We shall prove that this property infa
t 
hara
terizes symple
ti
 and anti-symple
ti
 linear maps.Re
all that an ellipsoid 
entered at 0 in the Eu
lidean spa
e R
2n is given by

E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}where the 2n × 2n matrix (aij) is symmetri
 positive de�nite. De�ne theinner produ
t
〈u, v〉A = 〈Au, v〉,where 〈 , 〉 is the 
anoni
al inner produ
t on R

2n. Hen
e
u ∈ E ⇐⇒ 〈u, u〉A ≤ 1.Sin
e A is symmetri
 positive de�nite there exists an orthonormal basis

(u1, . . . , u2n) and a family or real numbers 0 < λ1 ≤ . . . ≤ λ2n su
h that
Aui = λiui for i = 1, . . . , 2n. So, if Φ is the element of O(2n) whi
h mapsthe 
anoni
al basis of R2n to (u1, . . . , u2n), we get

Φ−1(E) =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i=1

x2
i

ρ2i
≤ 1

}

,14



where ρi =
√

λ−1
i .Symple
ti
ally an ellipsoid 
an be 
hara
terized as follows.Lemma 2.4 Given any ellipsoid
E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}there is a linear symple
tomorphism Φ ∈ Sp(2n) su
h that
Φ(E) = E(r) :=

{

(x1, . . . , xn, y1, . . . , yn) ∈ R
2n|

n∑

j=1

x2
j + y2j
r2j

≤ 1

}

,for some n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn. Moreover, r isentirely determined by E.Proof. Sin
e ω0 is nondegenerate there exists a skew-symmetri
 (withrespe
t to 〈 , 〉A) nonsingular endomorphism J su
h that
ω0(u, v) = 〈Ju, v〉A.A

ording to a 
lassi
al result in linear algebra there exists an orthonormalbasis of 〈 , 〉A say (u1, . . . , un, v1, . . . , vn) and a family of real number 0 <

a1 ≤ . . . ≤ an su
h that, for i = 1, . . . , n,
Jui = aivi and Jvi = −aiui.For i = 1, . . . , n, put u′
i =

√

a−1
i ui and v′i =

√

a−1
i vi. It is easy to 
he
k that

(u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n) is a symple
ti
 basis of R2n. Denote by Φ the elementof Sp(2n) whi
h maps the 
anoni
al basis to this basis. Now, we have

〈u, u〉A = ω0(J
−1u, u)

=
n∑

i=1

(
ω0(J

−1u, v′i)ω0(u
′
i, u)− ω0(J

−1u, u′
i)ω0(v

′
i, u)

)

=

n∑

i=1

(
ω0(J

−1v′i, u)ω0(Φei, u)− ω0(J
−1u′

i, u)ω0(Φen+1, u)
)

=

n∑

i=1

(
1

ai
(ω0(u

′
i, u)ω0(Φei, u) + ω0(v

′
i, u)ω0(Φen+1, u))

)

=
n∑

i=1

(
1

ai
(ω0(Φei, u)ω0(Φei, u) + ω0(Φen+1, u)ω0(Φen+1, u))

)

=

n∑

i=1

(
1

ai
(ω0(ei,Φ

−1u)2 + ω0(en+1,Φ
−1u)2)

)

,15



and the �rst statement of the lemma follows.To prove uniqueness of the n-uple r1 ≤ . . . ≤ rn 
onsider the diagonal matrix
D(r) = diag(1/r21, . . . , 1/r

2
n, 1/r

2
1, . . . , 1/r

2
n).We must show that if there is a symple
ti
 matrix Φ su
h that

ΦTD(r)Φ = D(r′)then r = r′. Sin
e J0Φ
T = Φ−1J0 the above identity is equivalent to

Φ−1J0D(r)Φ = J0D(r′).Hen
e J0D(r) and J0D(r′) have the same eigenvalues. But it is easy the
he
k that the eigenvalues of J0D(r) are ±ı/r21, . . . ,±ı/r2n. This proves thelemma. �Remark 1 In the 
ase n = 1 the existen
e statement of Lemma 2.4 assertsthat every ellipse in R
2 
an be mapped into a 
ir
le by an area-preservinglinear transformation.In view of Lemma 2.4 we de�ne the symple
ti
 spe
trum of an ellipsoid

E to be the unique n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn su
h that Eis linearly symple
tomorphi
 to E(r). The spe
trum is invariant under linearsymple
tomorphisms and, in fa
t, two ellipsoids in R
n, whi
h are 
entered at0, are linearly symple
tomorphi
 if and only if they have the same spe
trum.Moreover, the volume of an ellipsoid E ∈ R

2n is given by
Vol(E) =

∫

E

ωn
n

n!
= πn

n∏

i=1

r2i .The following theorem 
hara
terizes the linear symple
ti
 width of an ellip-soid in terms of the spe
trum.Theorem 2.5 Let E ⊂ R
2n an ellipsoid 
entered at 0. Then

WL(E) = sup
B⊂E

WL(B) = inf
E⊂Z

WL(Z),where the supremum runs over all linear symple
ti
 balls 
ontained in E andthe in�mum runs over all symple
ti
 
ylinders 
ontaining E. Moreover,
WL(E) = πr21,where r = (r1, . . . , rn) is the symple
ti
 spe
trum asso
iated to E.16



Proof. There exists a symple
ti
 matrix Φ ∈ Sp(2n) su
h that ΦE =
E(r1, . . . , rn). Hen
e

Φ−1B2n(r1) ⊂ E ⊂ Φ−1Z2n(r1)and so
inf
E⊂Z

WL(Z) ≤ πr21 ≤ sup
B⊂E

WL(B).Now suppose that B is a linear symple
ti
 ball of radius r 
ontained in E.Then ΦB ⊂ ΦE ⊂ Z2n(r1) and so r ≤ r1. Similarly, if Z is a linear symple
ti

ylinder or radius R 
ontaining E then B2n(r1) ⊂ ΦE ⊂ ΦZ and so r1 ≤ R.Hen
e
sup
B⊂E

WL(B) ≤ πr21 ≤ inf
E⊂Z

WL(Z).Sin
e WL(E) = supB⊂E WL(B) this prove the theorem. �We �nish this se
tion by the following 
hara
terization of linear symple
-ti
 or anti-symple
ti
 maps.Theorem 2.6 Let Φ : R2n −→ R
2n be a linear map. Then the following areequivalent.

(i) Φ preserves the linear width of ellipsoids 
entered at 0.
(ii) The matrix Φ is either symple
ti
 or anti-symple
ti
, i.e., Φ∗ω0 = ±ω0.Proof. We have seen that symple
ti
 linear maps preserve the linear sym-ple
ti
 width and it is easy to see that anti-symple
ti
 linear maps do. Nowassume (i). We shall prove that Φ has the nonsqueezing property. To seethis let B be a linear symple
ti
 ball or radius r and Z be a linear symple
ti

ylinder of radius R su
h that

ΦB ⊂ Z.Then it follows from the monotoni
ity property of the linear symple
ti
 widththat
πr2 = WL(B) = WL(ΦB) ≤ WL(Z) = πR2and hen
e r ≤ R. It also follows from (i) that Φ must be nonsingular be
auseotherwise the image of the unit ball under Φ would have linear symple
ti
width zero. Moreover, Φ−1 also satis�es (i) be
ause

WL(Φ
−1E) = WL(ΦΦ

−1E) = WL(E)for every ellipsoid E whi
h is 
entered at zero. Thus we have proved thatboth Φ and Φ−1 have the nonsqueezing property and in view of Theorem 2.4this implies that Φ is either symple
ti
 or anti-symple
ti
. �17



3 Symple
ti
 manifolds and Hamiltonian �owsA symple
ti
 stru
ture on a manifold M is non-degenerate 
losed 2-form
ω ∈ Ω2(M), i.e., ω is a di�erential 2-form su
h that:1. for any x ∈ M , (TxM,ωx) is a symple
ti
 ve
tor spa
e,2. dω = 0.The 
ouple (M,ω) is 
alled symple
ti
 manifold.Let (M,ω) be symple
ti
 manifold. The nondegenera
y implies to the ex-isten
e of a 
anoni
al isomorphism between the tangent and the 
otangentbundle, namely,

ω♭ : TM −→ T ∗M : u −→ iuω = ω(u, .).In parti
ular, for any fun
tion H ∈ C∞(M), there exists a unique ve
tor �elddenoted by XH su
h that
iXH

ω = dH. (5)The ve
tor �eld XH is 
alled Hamiltonian ve
tor �eld asso
iated to H .On the other hand, the nondegenera
y is equivalent to the fa
t that themaximal form Ω = ∧nω is a volume form and hen
e any symple
ti
 manifoldis orientable. A symple
tomorphism of (M,ω) is a di�eomorphism φ :
M −→ M su
h that φ∗ω = ω. We denote the group of symple
tomorphismsby Symp(M,ω). A ve
tor �eld X is 
alled symple
ti
 if its �ow preserves
ω, i.e., the Lie derivative of ω is the dire
tion of X . Note that a

ording tothe Cartan's formula

LXω = diXω + iXdωand sin
e dω = 0, X is symple
ti
 if and only if iXω is 
losed. We denoteby X (M,ω) the spa
e of symple
ti
 ve
tor �elds. It is obvious that anyHamiltonian ve
tor �eld is symple
ti
.The next result shows that, when M is 
losed (
ompa
t without boundary),
X (M,ω) is the Lie algebra of the group Symp(M,ω).Proposition 3.1 Let (M,ω) be a 
losed symple
ti
 manifold. Let (Xt) be asmooth family of ve
tor �elds on M and (φt) ∈ Diff(M) the smooth familyof di�eomorphisms generated by (Xt) via

d

dt
φt = Xt ◦ φt and φ0 = id.Then φt ∈ Symp(M,ω) for every t if and only if Xt ∈ X (M,ω). Moreover,if X, Y ∈ X (M,ω) [X, Y ] ∈ X (M,ω) and

i[X,Y ]ω = dH where H = ω(X, Y ).18



Proof. The �rst statement follows from the relation
d

dt
φ∗
tω = φ∗

t (diXt
ω + iXt

dω) = φ∗
tdiXt

ω.On the other hand, the relations
L[X,Y ]ω = LX ◦ LY ω − LY ◦ LXω and i[X,Y ]ω = LY iXω + iYLXωimply in a obvious way the se
ond statement. �Example 1 1. The standard model of a symple
ti
 manifold is the Eu-
lidean spa
e R

2n endowed with its 
anoni
al symple
ti
 form
ω0 =

n∑

i=1

dxi ∧ dyi,where (x1, . . . , xn, y1, . . . , yn) are the 
anoni
al linear 
oordinates of R2n.2. Any oriented surfa
e S endowed with its area form is a symple
ti
 man-ifold. For instan
e the 2-sphere S2 endowed with the 2-form
ω((x, u), (x, v)) = 〈x, u× v〉is a symple
ti
 manifold.3. The 
anoni
al symple
ti
 stru
ture of the 
otangent bundle.Let L be a smooth manifold, 
onsider T ∗L the total spa
e of its 
otan-gent bundle and denote by π : T ∗L −→ L the 
anoni
al proje
tion. TheLiouville form in T ∗L is the di�erential 1-form λ in T ∗L given by

λ(Zα) = α(Tαπ(Zα)),where α ∈ T ∗L and Zα ∈ Tα(T
∗L). Let (q1, . . . , qn) be a 
oordinatessystem on L and (q1, . . . , qn, p1, . . . , pn) the asso
iated 
oordinates sys-tem on T ∗L. Then

λ =
n∑

i=1

pidqi.This relation implies that
dλ =

n∑

i=1

dpi ∧ dqiand hen
e (T ∗L, dλ) is a symple
ti
 manifold. This symple
ti
 stru
tureon T ∗L is 
alled 
anoni
al. 19



Darboux's Theorem asserts that there is no lo
al invariant in symple
ti
geometry, more pre
isely, in a given dimension all symple
ti
 forms are lo
allydi�eomorphi
.Theorem 3.1 Let (M,ω) be a symple
ti
 manifold and m ∈ M . Then thereexists a 
oordinates system (x1, . . . , xn, y1, . . . , yn) su
h that
ω =

n∑

i=1

dxi ∧ dyi.Su
h 
oordinates are 
alled Darboux's 
oordinates.Proof. A

ording to Theorem 2.1 there is a 
oordinates system (q1, . . . , qn, p1, . . . , pn)de�ned on an open set U 
ontaining m su
h that if ω1 =
n∑

i=1

dqi ∧ dpi then
ω(m) = ω1(m).Moreover, sin
e ω1 − ω0 is 
losed there exists σ ∈ Ω1(U) su
h that
dσ = ω1 − ω0.For t ≥ [0, 1] put ωt = ω + tdσ. Sin
e ωt(m) is nondegenerate and [0, 1]is 
ompa
t, we 
an 
hoose U su
h that ωt is nondegenerate on U for every

t ≥ [0, 1]. We 
onsider now the family of ve
tor �elds (Xt) de�ned by
iXt

ωt = −σand Φt the family of di�eomorphisms de�ned by
d

dt
Φt = Xt ◦ Φt and Φ0 = id.Sin
e Xt(m) = 0 for every t ∈ [0, 1] we 
an shrink U if ne
essary to get Φtde�ned for every t ∈ [0, 1] and Φt(U) ⊂ U . Now

d

dt
Φ∗

tωt = Φ∗
t

(
d

dt
ωt + iXt

dωt + diXt
ωt

)

= Φ∗
t (dσ − dσ) = 0,and hen
e Φ∗

1ω1 = ω and the theorem follows. �A Hamiltonian system is a triple (M,ω,H) where (M,ω) is a sym-ple
ti
 manifold and H a fun
tion on M . The Hamiltonian ve
tor �eld XH20



asso
iated to H has a �ow 
alled Hamiltonian �ow and its integral 
urvesare solution of
ẋ(t) = XH(x(t)).If (x1, . . . , xn, y1, . . . , yn) are Darboux's 
oordinates then this di�erential sys-tem is equivalent to

ẋi =
∂H

∂yi
and ẏi = −∂H

∂xi

, i = 1, . . . , n. (6)Example 2 The harmoni
 os
illator is the Hamiltonian system (R2, ω0, H)with
H(x, y) =

1

2
(x2 + y2).The di�erential system (6) is written

ẋ = y and ẏ = −xwhi
h equivalent to
ẋ = y and ẍ = −x.The 
orresponding Hamiltonian �ow is given by

Φt(x, y) = (x cos t+ y sin t,−x sin t + y cos t).4 The Hofer-Zehnder Capa
ityIn this �nal se
tion we establish the existen
e of the Hofer-Zehnder 
apa
ityand hen
e prove the Gromov's nonsqueezing theorem. This 
apa
ity is basedon properties of the periodi
 orbits of Hamiltonian �ows on a symple
ti
manifold (M,ω) and was introdu
ed in [5℄.Let (M,ω) be a symple
ti
 manifold. Denote the set of all nonnegativeHamiltonian fun
tions whi
h are 
ompa
tly supported on the interior of Mand whi
h attain their maximum on some open set by
H(M) =

{
H ∈ C∞

0 (intM)|H ≥ 0, H|U = supH form some open set U}
.For every fun
tion H 
onsider the time-independent Hamiltonian �ow φt

H ∈
Sympc(M,ω) generated by the Hamiltonian ve
tor �eld XH . An orbit x(t) =
φt
H(t) is 
alled T -periodi
 if x(t+T ) = x(t) for every t ∈ R. Call a fun
tion21



H ∈ H(M) admissible if the 
orresponding Hamiltonian �ow has no non-
onstant T -periodi
 orbit with period T ≤ 1. In other word, every non
on-stant periodi
 orbit has period > 1. Denote the set of admissible Hamiltonianfun
tions by
Had(M,ω) = {H ∈ H(M)| H admissible} .The following lemma shows that for every Hamiltonian fun
tion H ∈ H(M)the fun
tion ǫH is admissible for ǫ > 0 su�
iently small. Roughly speaking,if a ve
tor �eld is small then its orbits are slow and hen
e the period is long.Lemma 4.1 Let x(t) = x(t+ T ) ∈ R

m be a periodi
 solution of the di�eren-tial equation
ẋ(t) = f(x),where f : Rm −→ R

m is 
ontinuously di�erentiable. If
T. sup

x

‖df(x)‖ < 1then x(t) is 
onstant.Proof. Sin
e x(0) = x(T ) an easy 
al
ulation shows that
ẋ(t) =

∫ t

0

s

T
ẍ(s)ds+

∫ T

t

s− T

T
ẍ(s)ds.This implies

|ẋ(t)| ≤
∫ T

0

|ẍ(s)|ds ≤
√
T‖ẍ‖L2[0,T ]and hen
e

‖ẋ‖L2 ≤ T‖ẍ‖L2 .Note denote ǫ = sup ‖df(x)‖ and note that
|ẍ| ≤ ‖df(x)‖.|ẋ| ≤ ǫ|ẋ|.Hen
e

‖ẍ‖L2 ≤ ǫ‖ẋ‖L2 ≤ ǫT‖ẍ‖L2.Sin
e ǫT < 1 it follows ẍ(t) ≡ 0. Hen
e ẋ(t) is 
onstant and periodi
 andhen
e x(t) is 
onstant. �The Hofer-Zehnder 
apa
ity of (M,ω) is de�ned by
cHZ(M,ω) = sup

H∈Had(M,ω)

‖H‖22



where ‖H‖ is the Hofer norm given by
‖H‖ = sup

x∈M
H(x)− inf

x∈M
H(x).One 
an dedu
e easily from Lemma 4.1 that for every nonempty symple
-ti
 manifold (M,ω), cHZ(M,ω) > 0.The following theorem is due to Hofer and Zehnder [5℄.Theorem 4.1 The map (M,ω) 7→ cHZ(M,ω) satis�es the monotoni
ity,
onformality and normalization axioms of symple
ti
 
apa
ity. Moreover,

cHZ(B
2n(r), ω0) = cHZ(Z

2n(r), ω0) = πr2for every r > 0.The proof of this theorem rests on the following existen
e result for periodi
orbits of Hamiltonian di�erential equation in R
2n whi
h a proof will be givenin the last se
tion.Theorem 4.2 Assume H ∈ H(Z2n(1)) with supH > π. Then the Hamilto-nian �ow of H has a non
onstant periodi
 orbit of period 1.Proof of Theorem 4.1.

• Monotoni
ity. Let φ : (M1, ω1) −→ (M2, ω2) be a symple
ti
 embed-ding with dimM1 = dimM2. If H1 : M1 −→ R is a 
ompa
tly sup-ported fun
tion then there is a unique 
ompa
tly supported fun
tion
H2 : M2 −→ R su
h that H2 vanishes on M2−φ(M1) and H1 = H2 ◦φ.Sin
e H1 is 
ompa
tly supported the fun
tion H2 is smooth. Sin
e
φ intertwine the Hamiltonian �ows of H1 et H2 there is a one-to-one
orresponden
e of non
onstant periodi
 orbits of these �ow. Hen
e

cHZ(M1, ω1) = sup
H1∈Had(M1,ω1)

‖H1‖

= sup
H2∈Had(M2,ω2)

supp(H2)⊂φ(M1)

‖H2‖

≤ cHZ(M2, ω2).This proves monotoni
ity.
• Conformality. Sin
e the Hamiltonian ve
tor �eld of H with respe
tto ω agree with the Hamiltonian �eld of λH with respe
t to λω andhen
e

Had(M,λω) = {λH|H ∈ Had(M,ω)}and 
onformality follows. 23



• Non triviality. We shall now prove the inequality cHZ(B
2n(1), ω0) ≥

π. Let ǫ > 0 and 
hoose a smooth fun
tion f : [0, 1] −→ R su
h that
∀r, −π < f ′(r) ≤ 0, f(r) = π−ǫ, for r near 0 and f(r) = 0 for r near 1.De�ne H(z) = f(|z|2) for z ∈ B2n(1). Then H ∈ H(B2n) and ‖H‖ =
π − ǫ. We must prove now that H is admissible. But the orbits of theHamiltonian �ow are easy to 
al
ulate expli
itly. A

ording to (6), theHamiltonian di�erential equation of H is of the form

ẋ = 2f ′(|z|2)y and ẏ = −2f ′(|z|2)xand it follows that r = |z(t)|2 is 
onstant along the solutions. In 
om-plex notation z = x+ ıy the solutions are z(t) = exp(−2ıf ′(r)t)z0 andare all periodi
. They are non
onstant whenever f ′(r) 6= 0 and in this
ase th period is T = π
f ′(r)

> 1. Hen
e for every ǫ > 0 there is anadmissible Hamiltonian fun
tion H ∈ H(B2n) with ‖H‖ = π − ǫ andthis proves the inequality
cHZ(B

2n(1), ω0) ≥ π.Now Theorem 4.2 asserts that for every H ∈ H(Z2n(1)) with ‖H‖ > πthe 
orresponding Hamiltonian �ow has non
onstant periodi
 orbit ofperiod 1. Hen
e any su
h fun
tion is not admissible and this implies
cHZ(Z

2n(1), ω0) ≤ π.By the monotoni
ity axiom we have
cHZ(B

2n(1), ω0) = cHZ(Z
2n(1), ω0) = πand this proves the theorem. �We shall now restri
t the dis
ussion to subsets of R

2n. These subsetsare not required to be open, i.e, they are not required to be manifolds. Asymple
ti
 embedding φ : A −→ R
2n de�ned on an arbitrary subset A ⊂ R

2nis by de�nition a map whi
h extends to a symple
ti
 embedding of an openneighborhood of A. Now a symple
ti
 
apa
ity c on R
2n assigns a number

c(A) ∈ [0,∞[ to every subset A ⊂ R
2n su
h that the following holds:

• (Monotoni
ity) If there is a symple
tomorphism φ of R
2n su
h that

φ(A) ⊂ B then c(A) ≤ c(B).
• (Conformality) c(λA) = λ2

c(A).24



• (Non triviality) c(B2n(1)) > 0 and c(Z2n(1)) < ∞.For every subset A ⊂ R
2n de�ne

wG(A) = sup
{
πr2|B2n(r) embeds symple
ti
ally inA}and

wG(A) = inf
{
πr2|A embeds symple
ti
ally inZ2n(r)

}It follows again from Gromov's nonsqueezing theorem that wG(A) and wGsatisfy the axioms of a symple
ti
 
apa
ity on R
2n. If c is any other 
apa
ityon R

2n we have
wG(A) ≤ c(A) ≤ wG(A), (7)for every subset A ∈ R

2n.Example 3 Re
all from Lemma 2.4 that given any ellipsoid
E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}there is a linear symple
tomorphism Φ ∈ Sp(2n) su
h that
Φ(E) = E(r) :=

{

(x1, . . . , xn, y1, . . . , yn) ∈ R
2n|

n∑

j=1

x2
j + y2j
r2j

≤ 1

}

,for some n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn. Moreover, r isentirely determined by E. Sin
e
B2n(r1) ⊂ ΦE ⊂ Z2n(r1)it follows that
c(E) = πr21 = wL(E)for every symple
ti
 
apa
ity c whi
h satis�es (1). Here wL denotes the linearsymple
ti
 width and the last equation follows from Theorem 2.5.A symple
tomorphism of a symple
ti
 manifold (M,ω) is a di�eomor-phism φ su
h that φ∗ω = ω. This de�nition involves the �rst derivatives of φand so 
annot be generalized in an obvious way to homeomorphisms. This in
ontrast to the volume-preserving 
ase: a di�eomorphism preserves a volumeform if and only if it preserves the 
orresponding measure. Eliasberg in [3, 4℄and, independently, Ekeland-Hofer in [2℄ realized that one 
an use 
apa
itiesin a similar way to give an alternative de�nition of a symple
tomorphismwhi
h does not involve derivatives. Their observation is summarized in thefollowing proposition. 25



Proposition 4.1 Let φ : R2n −→ R
2n be a di�eomorphism and c be a sym-ple
ti
 
apa
ity whi
h satis�es (1). Then the following are equivalent.

(i) φ preserves the 
apa
ity if ellipsoids, i.e., c(φ(E)) = c(E) for every ellip-soids E in R
2n.

(ii) φ is either a symple
tomorphism or anti-symple
tomorphism, i.e., φ∗ω =
±ω.Here we 
onsider ellipsoids with arbitrary 
enter. It follows from thede�nition of a symple
ti
 
apa
ity that every symple
tomorphism and ev-ery anti-symple
tomorphism preserves the symple
ti
 
apa
ity of ellipsoids.For anti-symple
tomorphism one needs the additional elementary fa
t thatfor every ellipsoid there exists an anti-symple
tomorphism whi
h maps thisellipsoid to itself. In Theorem 2.6 we have shown that, 
onversely, everylinear map whi
h preserves the linear symple
ti
 width of ellipsoids is eithersymple
ti
 or anti-symple
ti
. Proposition 4.1 is the nonlinear version of thisresult. The proof is elementary. The only deep observation is the existen
eof a symple
ti
 
apa
ity. The proof is based on the following lemma.Lemma 4.2 Let φm : R2n −→ R

2n a sequen
e of homeomorphisms 
onverg-ing to a homeomorphism φ;R2n −→ R
2n, uniformly on 
ompa
t sets. Assumethat φm preserves the 
apa
ity of ellipsoids for every m. Then φ preservesthe 
apa
ity of ellipsoids.Proof. without loss of generality we 
onsider only ellipsoids 
entered at zero.We �rst prove that for every ellipsoids E and every positive number λ < 1there exists a m0 > 0 su
h that for every m ≥ m0

φm(λE) ⊂ φ(E) ⊂ φm(λ
−1E). (8)To see this, abbreviate fm = φ−1 ◦ φm. Then fm and f−1

m 
onverges to theidentity, uniformly on 
ompa
t sets. So the in
lusions fm(λE) ⊂ E and
f−1
m (λE) ⊂ E are obvious for large m and (8) follows. This equation nowimplies that

λ2
c(E) ≤ c(φ(E)) ≤ λ−2

c(E).Sin
e λ < 0 was 
hosen arbitrarily 
lose to 1 it follows that φ preserves the
apa
ity of ellipsoids. �Proof of Proposition 4.1. Assume (i). Then the maps
φt(z) =

1

t
φ(tz)are di�eomorphisms of R2n whi
h preserve the 
apa
ity of ellipsoids and they
onverge, uniformly on 
ompa
t sets the the linear map Φ = dφ(0). Hen
e26



by Lemma 4.2, Φ preserves the 
apa
ity of ellipsoids. We have shown (
f.Example 3) that the 
apa
ity of ellipsoids agrees with its symple
ti
 width.It follows from Theorem 2.6 that Φ∗ω0 = ±ω0. The same holds when Φ isrepla
ed by dφ(z) for any z ∈ R
2n and, by 
ontinuity, the sign is independentof z. Thus we have proved that (i) implies (ii). The 
onverse is obvious. �Proposition 4.1 gives rise to the de�nition of a symple
ti
 homeomor-phism. Let n be odd. Then an orientation-preserving homeomorphism φ of

R
2n is said to be symple
ti
 if, for some 
apa
ity c on subset of R2n, and allsu�
iently small ellipsoids E we have φ(c(E)) = c(E). If n is even, φ is saidto be symple
ti
 if the homeomorphism φ× id of R2n+2 satis�es the previous
onditions.One 
an translate this de�nition to an arbitrary symple
ti
 manifold usingDarboux's theorem. But they are many open questions. For example, if

φ preserves the 
apa
ity of all small ellipsoids, mus it also preserve the 
a-pa
ity of large ellipsoids? Must these symple
ti
 homeomorphisms preservevolume?Referen
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