
Introdution to sympleti topology:Gromov's nonsqueezing TheoremMohamed Bouetta14-09-2011AbstratThis ourse is an introdution to sympleti topology via the sur-prising Gromov's nonsqueezing theorem. This theorem assert that ifthere is a sympleti embedding whih maps the ball B2n(0, r) intothe ylinder B2(0, R) × R
2(n−1) then r ≤ R. The �rst ourse will bedevoted to the introdution of some elementary properties of symple-ti vetor spaes and the proof of a�ne nonsqueezing theorem andthe introdution of the linear sympleti width. The seond oursewill be devoted to the introdution of sympleti manifolds and someof their immediate properties, namely, we will prove Darboux's theo-rem. In the last ourse, we will prove that the nonsqueezing theoremis equivalent to the existene of sympleti apaities and we will de-�ne the Hofer-Zehnder apaity and then prove Gromov's theorem.Finally, by using sympleti apaity we give a de�nition of symple-ti homeomorphisms as a generalization of sympleti di�eomorphismsand hene give rise to sympleti topology.1 IntrodutionA sympleti manifold is a smooth manifold (M,ω) (eventually with aboundary) endowed with a losed nondegenerate di�erential 2-form ω. Asmooth map F : (M1, ω1) −→ (M2, ω2) between two sympleti manifolds isalled sympleti if F ∗ω2 = ω1.The standard model of a sympleti manifold is the Eulidean spae R

2nendowed with its anonial sympleti form
ω0 =

n∑

i=1

dxi ∧ dyi,1



where (x1, . . . , xn, y1, . . . , yn) are the anonial linear oordinates of R
2n. Asympletomorphism of (R2n, ω0) is a di�eomorphism F : R

2n −→ R
2nsuh that F ∗ω0 = ω0. It is obvious that a sympletomorphism F is alsoa preserving-volume di�eomorphism sine F ∗Ω = Ω where Ω = ∧nω0 is avolume form assoiated to ω0. Long time ago, many people used to believethat whatever ould be done with a preserving-volume di�eomorphism ouldbe done by a sympletomorphism (alled anonial transformation byphysiists). This belief was supported by the ase n = 1 where both notionsin fat oinide. When some people began to suspet that the group ofsympletomorphisms is signi�antly smaller than the group of preserving-volume di�eomorphism there was no result to pinpoint the di�erene untilGromov proved his elebrated nonsqueezing theorem in 1985. This says thatthe standard losed sympleti ball annot be sympletially embedded intoa thin ylinder.More preisely, the sympleti ylinder of radius R > 0 is

Z2n(R) =
{
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n, x2
1 + y21 ≤ R2

}
≃ B2(R)× R

2n−2.We denote the Eulidean losed ball of enter 0 and the radius r in R
2n by

B2n(r).

Theorem 1.1 If there is a sympleti embedding F : B2n(r) →֒ Z2n(R) then
r ≤ R.The Gromov's original proof used J-holomorphi urves [6℄. In this oursewe give another proof of this theorem using the notion of sympleti apaity,namely, the sympleti apaity introdued by Hofer-Zehnder in [5℄. Indeed,2



Gromov's nonsqueezing theorem gave rise to the following de�nition whih isdue to Ekeland and Hofer [2℄. A sympleti apaity is a funtor c whihassigns to every sympleti manifold (M,ω) a nonnegative (possibly in�nite)number c(M,ω) and satis�es the following onditions.
• (Monotoniity) If there is a sympleti embedding (M1, ω1) →֒ (M2, ω2)and dimM1 = dimM2 then c(M1, ω1) ≤ c(M2, ω2).
• (Conformality) c(M,λω) = |λ|c(M,ω).
• (Non triviality) c(B2n(1), ω0) > 0 and c(Z2n(1), ω0) < ∞.The key to understanding sympleti apaities is the observation that thenon triviality axiom makes it impossible for the volume ofM to be a apaity.The requirement that c(Z2n(1), ω0) be �nite means that these apaities are2-dimensional invariants.The existene of sympleti apaities is non trivial. In fat, we have thefollowing proposition.Proposition 1.1 The existene of a sympleti apaity c satisfying

c(B2n(1), ω0) = c(Z2n(1), ω0) = π (1)is equivalent to Gromov's nonsqueezing theorem.Proof. Suppose that there is a sympleti apaity satisfying (1) and sup-pose that there exists a sympleti embedding (B2n(r), ω0) →֒ (Z2n(R), ω0).The monotoniity axiom implies
c(B2n(r), ω0) ≤ c(Z2n(R), ω0).Now it is easy to see that we have the following sympleti equivalenes:

(B2n(r), ω0) ≃ (B2n(1), r2ω0) and (Z2n(R), ω0) ≃ (Z2n(1), R2ω0).By the normality axiom we get that r2 ≤ R2 and the Gromov's nonsqueezingtheorem follows.Conversely, suppose that the Gromov's nonsqueezing theorem holds. For anysympleti 2n-dimensional manifold (M,ω), put
cG(M,ω) = sup E(M,ω),where

E(M,ω) =
{
πr2| (B2n(r), ω0) embeds sympletially in M

}
.3



Let us show that cG is a sympleti apaity satisfying (1). It is alledGromov width.Aording to Darboux's theorem (see Theorem 3.1), there exists always asympleti embedding of a losed sympleti ball (B2n(r), ω0) in (M,ω) andhene cG(M,ω) is well-de�ned.Suppose that there is a sympleti embedding (M1, ω1) →֒ (M2, ω2) and
dimM1 = dimM2. Then

E(M1, ω1) ⊂ E(M2, ω2)and hene cG(M1, ω1) ≤ cG(M2, ω2).On the other hand, we have for any λ 6= 0,
E(M,λω) =

{
|λ|πr2| (B2n(r), ω0) embeds sympletially in (M,ω)

}and hene cG(M,λω) = |λ|cG(M,ω).Now it is obvious that cG(B2n(r), ω0) = πr2. Moreover, the inlusion
(B2n(R), ω0) →֒ (Z2n(R), ω0)is a sympleti embedding and hene cG(Z

2n(R), ω0) ≥ πR2. On the otherhand, if
(B2n(r), ω0) →֒ (Z2n(R), ω0)is a sympleti embedding then aording to Gromov's nonsqueezing theorem

r ≤ R and hene cG(Z
2n(R), ω0) ≤ πR2. Finally,

cG(Z
2n(R), ω0) = πR2,and the proposition follows. �2 A�ne nonsqueezing theorem2.1 Sympleti vetor spaesLet (e1, . . . , e2n) denote the anonial basis of R2n. The bilinear skew-symmetri2-form

ω0 =

n∑

i=1

e∗i ∧ e∗i+nis non-degenerate, i.e.,
ω0(u, v) = 0 ∀v ∈ R

2n =⇒ u = 0.4



The ouple (R2n, ω0) is the standard example of sympleti vetor spae.More generally, a sympleti vetor spae is a ouple (V, ω) where V is�nite dimensional R-vetor spae and ω is a bilinear skew-symmetri 2-formon V whih is nondegenerate. This means that ω satis�es:1. ω is bilinear;2. for any u, v ∈ V , ω(u, v) = −ω(v, u);3. for any u ∈ V ,
ω(u, v) = 0 ∀v ∈ V =⇒ u = 0.A sympleti vetor spae must be even dimensional. Indeed, if (V, ω) isa sympleti vetor spae and (u1, . . . , un) is a basis of V , then the non-degeneray of ω is equivalent to the fat that the matrix (ω(ui, uj))

n

i,j=1 isinvertible. Sine a skew-symmetri odd dimensional real matrix must havevanishing determinant we dedue that n is even.Let (V, ω) be a sympleti vetor.
• A linear sympletomorphism of V is a vetor spae isomorphism
Φ : V −→ V whih preserves the sympleti form ω, i.e., for any
u, v ∈ V ,

Φ∗ω(u, v) := ω(Φu,Φv) = ω(u, v).The linear sympletomorphisms of (V, ω) form a group whih we denoteby Sp(V, ω). In the ase of the standard sympleti struture on R
2n,we denote Sp(2n) = Sp(R2n, ω0).

• Let W ⊂ V be a vetor subspae. The sympleti orthogonal of Wis the vetor spae
W ω = {u ∈ V, ω(u, v) = 0 ∀v ∈ W} .Proposition 2.1 We have

dimW ω + dimW = dimV and (W ω)ω = W.Proof. We de�ne ı : V −→ V ∗ by putting
ı(v) = ω(v, .),5



where ω(v, .) : V −→ R, u 7→ ω(v, u). The nondegeneray of ω is equivalentto the fat that ı is bijetive and we have ı(W ω) = W 0 where W 0 is theannihilator of W , i.e.,
W 0 = {α ∈ V ∗, α(W ) = 0} .Now, it is well-known that dimW 0 = dimV − dimW and the �rst formulafollows.It is obvious that W ⊂ (W ω)ω and aording to the �rst formula we have

dimW = dim(W ω)ω and hene (W ω)ω = W . �A vetor subspae W of V is alled isotropi if W ⊂ W ω, oisotropi if
W ω ⊂ W , sympleti if W ∩W ω = {0}, Lagrangian if W = W ω.The following theorem is the main result of this subsetion. It asserts thatall sympleti vetor spaes of the same dimension are sympletomorphi.Theorem 2.1 Let (V, ω) be a sympleti vetor spae of dimension 2n. Thenthere exists a basis (e1, . . . , en, ē1, . . . , ēn) suh that

ω(ei, ej) = ω(ēi, ēj) = 0 and ω(ei, ēj) = δij.Suh a basis is alled a sympleti basis. Moreover, there exists a vetorspae isomorphism Φ : R2n −→ V suh that
Φ∗ω = ω0.Proof. By indution over n. If n = 1, there exists obviously two vetors e, ēsuh that ω(e, ē) = 1 and hene (e, ē) is the desired basis.Suppose that the result holds for n. Let (V, ω) be a 2n + 2-dimensionalsympleti vetor spae. Sine ω is nondegenerate there exists two vetors

e1, ē1 suh that ω(e1, ē1) = 1. These vetors are linearly independent andspan a 2-dimensional vetor subspae W . Let us show that W is a sympletivetor subspae. Indeed, if u ∈ W ∩W ω then u = ae1 + bē1,
0 = ω(u, e1) = −b and 0 = ω(u, ē1) = a.Hene u = 0. Thus, aording to Proposition 2.1,

V = W ⊕W ω,and moreover (W ω, ω) is sympleti vetor spae. By indution hypothe-sis, there exists a sympleti basis of W ω (e2, . . . , en, ē2, . . . , ēn). Finally,
(e1, . . . , en, ē1, . . . , ēn) is sympleti basis of V .The isomorphism Φ : R2n −→ V given by

Φ(x1, . . . , xn, y1, . . . , yn) =

n∑

i=1

(xiei + yiēi)6



satis�es Φ∗ω = ω0. �The volume form assoiated to a sympleti vetor spae (V, ω) is the
2n-form given by

Ω = ωn =

n
︷ ︸︸ ︷
ω ∧ . . . ∧ ω .Note that Ω 6= 0 and, more preisely, if (e1, . . . , en, ē1, . . . , ēn) is a sympletibasis then

Ω = n! (e∗1 ∧ ē∗1 ∧ . . . ∧ e∗n ∧ ē∗n) .2.2 Linear sympleti groupIn this subsetion, we study the linear sympletomorphism group of a sym-pleti vetor spae in more detail. Aording to Theorem 2.1 it su�es tostudy the sympletomorphism group of (R2n, ω0). Let B0 be the anonialbasis of R2n and 〈 , 〉 the Eulidean inner produt of R2n. The matrix of ω0in B0 is the matrix
J0 =

(
0 In

−In 0

)

.We have obviously J20 = −I2n,
〈J0u, J0v〉 = 〈u, v〉 and ω0(u, v) = 〈J0u, v〉. (2)It is easy to hek that an isomorphism of R2n is a linear sympletomor-phism i� its matrix Φ in B0 satis�es

ΦTJ0Φ = J0. (3)So we an identify Sp(2n) to the spae of 2n×2n-matries whih satisfy (3).If we write a 2n× 2n-matrix Φ as
Φ =

(
A B
C D

)

,where A,B,C and D are real n× n-matries. It is straightforward to hekthat Φ satis�es (3) i�
ATC = CTA, BTD = DTB and ATD − CTB = In. (4)Note �rst that a linear sympletomorphism preserves the volume form andhene its determinant is equal to 1. Thus
Sp(2n) ⊂ SL(2n,R) := {Φ ∈ GL(2n,R), det Φ = 1} .7



Note also that, aording to (3), Φ ∈ Sp(2n) i� ΦT ∈ Sp(2n).We identify GL(n,C) with a subgroup of GL(2n,R) as follows
X + ıY ∈ GL(n,C) 7→

(
X −Y
Y X

)

∈ GL(2n,R).With this identi�ation in mind, one an see easily that
GL(n,C) = {Φ ∈ GL(2n,R),ΦJ0 = J0Φ} .The unitary group is identi�ed to

U(n) =

{(
X −Y
Y X

)

∈ GL(n,C), (X + ıY )(X − ıY )T = In

}

.Lemma 2.1 We have
Sp(2n) ∩O(2n) = Sp(2n) ∩GL(n,C) = O(2n) ∩GL(n,C) = U(n).Proof. Let Φ be a 2n× 2n real matrix. We have the following equivalene:

Φ ∈ GL(n,C) ⇐⇒ ΦJ0 = J0Φ,

Φ ∈ Sp(2n) ⇐⇒ ΦTJ0Φ = J0,

Φ ∈ O(2n) ⇐⇒ ΦTΦ = I2n.It is obvious that any of these onditions imply the third. Now, aording to(4), the subgroup Sp(2n) ∩GL(n,C) onsists of this matrix
Φ =

(
X −Y
Y X

)

∈ GL(2n,R)whih satisfy
XTY = Y TX and XTX + Y TY = In.This is preisely the ondition

(X + ıY )(X − ıY )T = In.

�For any Φ ∈ GL(2n,R) we denote by σ(Φ) ⊂ C the set of zeros of theharateristi polynomial assoiated to Φ, i.e.,
λ ∈ σ(Φ) ⇐⇒ det(Φ− λI2n) = 0.For any λ ∈ σ(Φ) we denote by m(λ) the multipliity of λ as a zero of theharateristi polynomial. Note that

σ(Φ) = σ(ΦT) and σ(Φ−1) =
{
λ−1, λ ∈ σ(Φ)

}
.8



Lemma 2.2 Let Φ ∈ Sp(2n). Then:1. σ(Φ) = σ(Φ−1).2. If ±1 ∈ σ(Φ) then it ours with even multipliity.Moreover,
Φz = αz, Φz′ = λ′z, λλ′ 6= 1 =⇒ ω0(z, z

′).Proof. Sine J20 = −I2n, we get from (3)
ΦT = J0Φ

−1J−1
0and hene

σ(Φ−1) = σ(ΦT) = σ(Φ).From this relation, we dedue that
∑

λ∈σ(Φ),λ6=±1

m(λ) = 2pwith p ∈ N. On the other hand, sine
1 = detΦ =

∏

λ∈σ(Φ)

λm(α)we dedue that if −1 ∈ σ(Φ) then m(−1) is even. Moreover, sine the degreeof the harateristi polynomial is even the eigenvalue 1 ours with evenmultipliity as well.The last statement follows from the identity
ω0(Φz,Φz

′) = ω0(z, z
′) = λλ′ω0(z, z

′).

�Let P ∈ GL(2n,R) symmetri and positive de�nite. Then P is diagonal-izable in an orthonormal basis, i.e., there exists a matrix Q ∈ O(2n) suhthat
P = Q








λ1 0 . . . 0

0
. . . ...... . . . 0

0 . . . 0 λ2n








QT,9



where 0 < λ1 ≤ . . . ≤ λ2n. For any real number α > 0 put
P α = Q








λα
1 0 . . . 0

0
. . . ...... . . . 0

0 . . . 0 λα
2n








QT.It is an easy exerise to show that P α does not depends on Q.Lemma 2.3 If P = PT ∈ Sp(2n) is symmetri, positive de�nite sympletimatrix then P α ∈ Sp(2n) for any real number α > 0.Proof. We will show that, for any z, z′ ∈ R
2n,

ω0(P
αz, P αz′) = ω(z, z′). (∗)First, denote by 0 < λ1 < . . . < λr the di�erent eigenvalues of P and

Vλ1, . . . , Vλr
the orresponding eigenspaes. We have

R
2n = Vλ1 ⊕ . . .⊕ Vλr

.We distinguish two ases:
• z ∈ Vλi

, z′ ∈ Vλj
and λiλj 6= 1. Then P αz = λα

i z and P αz′ = λα
j z

′ andaording to Lemma 2.2 ω0(z, z
′) = 0 and (∗) holds.

• z ∈ Vλi
, z′ ∈ Vλj

and λiλj = 1. Then P αz = λα
i z, P αz′ = λα

j z
′ and (∗)holds. �Let us reall the polar deomposition of the linear group GL(n,R).Theorem 2.2 Let A ∈ GL(n,R). Then there exists an unique ouple (O, S)suh that

A = SO,where O ∈ O(n) and S is symmetri, positive de�nite.Proposition 2.2 The unitary group U(n) is a maximal ompat subgroup of
Sp(2n) and the quotient Sp(2n)/U(n) is ontratible.Proof. First let us prove that the quotient Sp(2n)/U(n) is ontratible.Now, aording to Theorem 2.2, every matrix Φ ∈ Sp(2n) an be uniquelydeomposed as

Φ = SO10



where S is symmetri and positive de�nite and O is orthogonal. By thepreeding lemma
S = (ΦΦT)

1
2 ∈ Sp(2n)and hene

O = S−1Φ ∈ Sp(2n) ∩O(2n)
Lemma 2.1

= U(n).Thus the map
Sp(2n)× [0, 1] −→ Sp(2n) : (Φ, t) 7→ (ΦΦT)−

t
2Φis a retration of Sp(2n) onto U(n).To see that U(n) is a maximal ompat subgroup, let G ⊂ Sp(2n) beany ompat subgroup. We must show that G is onjugate to a subgroup of

U(n). Wed de�ne P ∈ Sp(2n) by
P =

∫

G

gTgdgwhere dg is the Haar measure of G. It is obvious that P is symmetri andpositive de�nite. Moreover, we have, for any Φ ∈ G,
ΦTPΦ = ΦT

(∫

G

gTgdg

)

Φ

=

∫

G

(gΦ)T(gφ)dg

= P.Sine P
1
2 is a sympleti matrix we obtain
Φ ∈ G =⇒ P

1
2ΦP− 1

2 ∈ Sp(2n) ∩O(2n)
Lemma 2.1

= U(n).This proves the proposition. �2.3 The a�ne nonsqueezing theoremAn a�ne sympletomorphism of R
2n is a map φ : R

2n −→ R
2n of theformula

φ(z) = Φz + z0,where Φ ∈ Sp(2n) and z0 ∈ R
2n. We denote by ASp(2n) the group ofa�ne sympletomorphisms. The a�ne nonsqueezing theorem asserts thata ball in R

2n an only be embedded into a sympleti ylinder by an a�ne11



sympletomorphism if it has a smaller radius. The sympleti ylinder ofradius R > 0 is
Z2n(R) =

{
(x1, . . . , xn, y1, . . . , yn) ∈ R

2n, x2
1 + y21 ≤ R2

}
≃ B2(R)× R

2n−2.We denote the Eulidean losed ball of enter 0 and the radius r in R
2n by

B2n(r).Theorem 2.3 Let φ ∈ ASp(2n) and assume that φ(B2n(r)) ⊂ Z2n(R).Then r ≤ R.Proof. Write φ(z) = Φ(z)+z0 with Φ ∈ Sp(2n) and z0 ∈ R
2n and denoteby (e1, . . . , e2n) the anonial basis of R2n. The ondition φ(B2n(r)) ⊂ Z2n(R)is equivalent to

∀u ∈ B2n(r), ((Φ(u))1 + z10)
2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2. (∗)Now it is easy to see that
(Φ(u))1 = 〈ΦTe1, u〉 and (Φ(u))n+1 = 〈ΦTen+1, u〉.The ruial point is that sine ΦT ∈ Sp(2n),

ω0(Φ
Te1,Φ

Ten+1) = ω0(e1, en+1) = 1.So, by using (2) and the Cauhy-Shwarz inequality, we get
1 = ω0(Φ

Te1,Φ
Ten+1) ≤ |ΦTe1||ΦTen+1|.This inequality implies that either |ΦTe1| or |ΦTen+1| is greater than or equalto one. Assume without loss of generality that |ΦTe1| ≥ 1 and hoose in (∗)

u = ǫr ΦTe1
|ΦTe1|

where ǫ is the sign of z10 . We get
r2 ≤ (r|ΦTe1|+ |z10 |)2 + ((Φ(u))n+1 + zn+1

0 )2 ≤ R2,and the theorem follows. �The nonsqueezing property haraterizes in fat linear sympletomor-phisms. We all a subset A ⊂ R
2n a linear sympleti ball of radius

r if there exists Φ ∈ Sp(2n) suh that A = Φ(B2n(r)). It results that A and
B2n(r) must have the same volume and hene r does not depend on Φ. Ina similar way, a subset Z ∈ R

2n is alled linear sympleti ylinder ifthere exists Φ ∈ Sp(2n) and r > 0 suh that Z = Φ(Z2n(r)). It follows from12



Theorem 2.3 that for any linear sympleti ylinder Z the number r > 0 is alinear sympleti invariant. Indeed, suppose that
Z = Φ1(Z

2n(r1)) = Φ2(Z
2n(r2))with Φ1,Φ2 ∈ Sp(2n). Sine B2n(r1) ⊂ Z2n(r1) we dedue that

Φ−1
2 Φ1(B

2n(r1)) ⊂ Z2n(r2)and by Theorem 2.3 r1 ≤ r2. A similar argument gives r2 ≤ r1 and hene
r1 = r2.A nonsingular 2n × 2n matrix Φ is said to have the linear nonsqueezingproperty if for every linear sympleti ball B of radius r and every linearsympleti ylinder Z of radius R we have

Φ(B) ⊂ Z =⇒ r ≤ R.The following theorem shows that linear sympletomorphisms are hara-terized by the linear nonsqueezing property. More preisely, we must alsoinlude the ase of anti-sympleti matries Φ whih satisfy Φ∗ω0 = −ω0.Theorem 2.4 Let Φ be a non singular 2n × 2n matrix suh that Φ and
Φ−1 have the linear nonsqueezing property. Then Φ is either sympleti oranti-sympleti.Proof. Assume that Φ is neither sympleti nor anti-sympleti. Thenneither is ΦT and so, by a density argument, there exists vetor u, v ∈ R

2nsuh that
ω0(Φ

Tu,ΦTv) 6= ±ω0(u, v).Perturbing u and v slightly, and using the fat that Φ is nonsingular, weway assume that ω0(u, v) 6= 0 and ω0(Φ
Tu,ΦTv) 6= 0. Moreover, replaing Φby Φ−1 if neessary, we may assume that ω0(Φ

Tu,ΦTv) < ω0(u, v). Now, byresaling u if neessary, we obtain
0 < λ2 = ω0(Φ

Tu,ΦTv) < ω0(u, v) = 1.Hene there exist sympleti bases (u1, v1, . . . , un, vn) and (u′
1, v

′
1, . . . , u

′
n, v

′
n)of R2n suh that

u1 = u, v1 = v, u′
1 = λ−1ΦTu, v′1 = ±λ−1ΦTv.Denote by Ψ ∈ Sp(2n) (resp. Ψ′ ∈ Sp(2n)) the matrix whih maps the anon-ial basis of R

2n to (u1, . . . , un, v1, . . . , vn) (resp. (u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n)).Then the matrix

A = Ψ′−1ΦTΨ13



satis�es
Ae1 = λe1 and Af1 = ±λf1.This implies that the transposed matrix AT maps the unit ball B2n(1) toylinder Z2n(λ). But sine λ < 1 this means that Φ does not have thenonsqueezing property in ontradition to our assumption. This proves thetheorem. �The a�ne nonsqueezing theorem gives rise to the notion of the linearsympleti width of an arbitrary subset A ⊂ R

2n, de�ned by
WL(A) = sup

{
πr2| φ(B2n(r)) ⊂ A for some φ ∈ ASp(R2n)

}
.It follows from Theorem 2.3 that the linear sympleti width has the followingproperties:

• (Monotoniity) If φ(A) ⊂ B for some φ ∈ ASp(R2n) then WL(A) ≤
WL(B).

• (Conformality) WL(λA) = λ2
WL(A).

• (Nontriviality) WL(B
2n(r)) = WL(Z

2n(r)) = πr2.The nontriviality axiom implies that WL is a two-dimensional invariant. Itis obvious from the monotoniity property that a�ne sympletomorphismspreserve the linear sympleti width. We shall prove that this property infat haraterizes sympleti and anti-sympleti linear maps.Reall that an ellipsoid entered at 0 in the Eulidean spae R
2n is given by

E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}where the 2n × 2n matrix (aij) is symmetri positive de�nite. De�ne theinner produt
〈u, v〉A = 〈Au, v〉,where 〈 , 〉 is the anonial inner produt on R

2n. Hene
u ∈ E ⇐⇒ 〈u, u〉A ≤ 1.Sine A is symmetri positive de�nite there exists an orthonormal basis

(u1, . . . , u2n) and a family or real numbers 0 < λ1 ≤ . . . ≤ λ2n suh that
Aui = λiui for i = 1, . . . , 2n. So, if Φ is the element of O(2n) whih mapsthe anonial basis of R2n to (u1, . . . , u2n), we get

Φ−1(E) =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i=1

x2
i

ρ2i
≤ 1

}

,14



where ρi =
√

λ−1
i .Sympletially an ellipsoid an be haraterized as follows.Lemma 2.4 Given any ellipsoid
E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}there is a linear sympletomorphism Φ ∈ Sp(2n) suh that
Φ(E) = E(r) :=

{

(x1, . . . , xn, y1, . . . , yn) ∈ R
2n|

n∑

j=1

x2
j + y2j
r2j

≤ 1

}

,for some n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn. Moreover, r isentirely determined by E.Proof. Sine ω0 is nondegenerate there exists a skew-symmetri (withrespet to 〈 , 〉A) nonsingular endomorphism J suh that
ω0(u, v) = 〈Ju, v〉A.Aording to a lassial result in linear algebra there exists an orthonormalbasis of 〈 , 〉A say (u1, . . . , un, v1, . . . , vn) and a family of real number 0 <

a1 ≤ . . . ≤ an suh that, for i = 1, . . . , n,
Jui = aivi and Jvi = −aiui.For i = 1, . . . , n, put u′
i =

√

a−1
i ui and v′i =

√

a−1
i vi. It is easy to hek that

(u′
1, . . . , u

′
n, v

′
1, . . . , v

′
n) is a sympleti basis of R2n. Denote by Φ the elementof Sp(2n) whih maps the anonial basis to this basis. Now, we have

〈u, u〉A = ω0(J
−1u, u)

=
n∑

i=1

(
ω0(J

−1u, v′i)ω0(u
′
i, u)− ω0(J

−1u, u′
i)ω0(v

′
i, u)

)

=

n∑

i=1

(
ω0(J

−1v′i, u)ω0(Φei, u)− ω0(J
−1u′

i, u)ω0(Φen+1, u)
)

=

n∑

i=1

(
1

ai
(ω0(u

′
i, u)ω0(Φei, u) + ω0(v

′
i, u)ω0(Φen+1, u))

)

=
n∑

i=1

(
1

ai
(ω0(Φei, u)ω0(Φei, u) + ω0(Φen+1, u)ω0(Φen+1, u))

)

=

n∑

i=1

(
1

ai
(ω0(ei,Φ

−1u)2 + ω0(en+1,Φ
−1u)2)

)

,15



and the �rst statement of the lemma follows.To prove uniqueness of the n-uple r1 ≤ . . . ≤ rn onsider the diagonal matrix
D(r) = diag(1/r21, . . . , 1/r

2
n, 1/r

2
1, . . . , 1/r

2
n).We must show that if there is a sympleti matrix Φ suh that

ΦTD(r)Φ = D(r′)then r = r′. Sine J0Φ
T = Φ−1J0 the above identity is equivalent to

Φ−1J0D(r)Φ = J0D(r′).Hene J0D(r) and J0D(r′) have the same eigenvalues. But it is easy thehek that the eigenvalues of J0D(r) are ±ı/r21, . . . ,±ı/r2n. This proves thelemma. �Remark 1 In the ase n = 1 the existene statement of Lemma 2.4 assertsthat every ellipse in R
2 an be mapped into a irle by an area-preservinglinear transformation.In view of Lemma 2.4 we de�ne the sympleti spetrum of an ellipsoid

E to be the unique n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn suh that Eis linearly sympletomorphi to E(r). The spetrum is invariant under linearsympletomorphisms and, in fat, two ellipsoids in R
n, whih are entered at0, are linearly sympletomorphi if and only if they have the same spetrum.Moreover, the volume of an ellipsoid E ∈ R

2n is given by
Vol(E) =

∫

E

ωn
n

n!
= πn

n∏

i=1

r2i .The following theorem haraterizes the linear sympleti width of an ellip-soid in terms of the spetrum.Theorem 2.5 Let E ⊂ R
2n an ellipsoid entered at 0. Then

WL(E) = sup
B⊂E

WL(B) = inf
E⊂Z

WL(Z),where the supremum runs over all linear sympleti balls ontained in E andthe in�mum runs over all sympleti ylinders ontaining E. Moreover,
WL(E) = πr21,where r = (r1, . . . , rn) is the sympleti spetrum assoiated to E.16



Proof. There exists a sympleti matrix Φ ∈ Sp(2n) suh that ΦE =
E(r1, . . . , rn). Hene

Φ−1B2n(r1) ⊂ E ⊂ Φ−1Z2n(r1)and so
inf
E⊂Z

WL(Z) ≤ πr21 ≤ sup
B⊂E

WL(B).Now suppose that B is a linear sympleti ball of radius r ontained in E.Then ΦB ⊂ ΦE ⊂ Z2n(r1) and so r ≤ r1. Similarly, if Z is a linear sympletiylinder or radius R ontaining E then B2n(r1) ⊂ ΦE ⊂ ΦZ and so r1 ≤ R.Hene
sup
B⊂E

WL(B) ≤ πr21 ≤ inf
E⊂Z

WL(Z).Sine WL(E) = supB⊂E WL(B) this prove the theorem. �We �nish this setion by the following haraterization of linear symple-ti or anti-sympleti maps.Theorem 2.6 Let Φ : R2n −→ R
2n be a linear map. Then the following areequivalent.

(i) Φ preserves the linear width of ellipsoids entered at 0.
(ii) The matrix Φ is either sympleti or anti-sympleti, i.e., Φ∗ω0 = ±ω0.Proof. We have seen that sympleti linear maps preserve the linear sym-pleti width and it is easy to see that anti-sympleti linear maps do. Nowassume (i). We shall prove that Φ has the nonsqueezing property. To seethis let B be a linear sympleti ball or radius r and Z be a linear sympletiylinder of radius R suh that

ΦB ⊂ Z.Then it follows from the monotoniity property of the linear sympleti widththat
πr2 = WL(B) = WL(ΦB) ≤ WL(Z) = πR2and hene r ≤ R. It also follows from (i) that Φ must be nonsingular beauseotherwise the image of the unit ball under Φ would have linear sympletiwidth zero. Moreover, Φ−1 also satis�es (i) beause

WL(Φ
−1E) = WL(ΦΦ

−1E) = WL(E)for every ellipsoid E whih is entered at zero. Thus we have proved thatboth Φ and Φ−1 have the nonsqueezing property and in view of Theorem 2.4this implies that Φ is either sympleti or anti-sympleti. �17



3 Sympleti manifolds and Hamiltonian �owsA sympleti struture on a manifold M is non-degenerate losed 2-form
ω ∈ Ω2(M), i.e., ω is a di�erential 2-form suh that:1. for any x ∈ M , (TxM,ωx) is a sympleti vetor spae,2. dω = 0.The ouple (M,ω) is alled sympleti manifold.Let (M,ω) be sympleti manifold. The nondegeneray implies to the ex-istene of a anonial isomorphism between the tangent and the otangentbundle, namely,

ω♭ : TM −→ T ∗M : u −→ iuω = ω(u, .).In partiular, for any funtion H ∈ C∞(M), there exists a unique vetor �elddenoted by XH suh that
iXH

ω = dH. (5)The vetor �eld XH is alled Hamiltonian vetor �eld assoiated to H .On the other hand, the nondegeneray is equivalent to the fat that themaximal form Ω = ∧nω is a volume form and hene any sympleti manifoldis orientable. A sympletomorphism of (M,ω) is a di�eomorphism φ :
M −→ M suh that φ∗ω = ω. We denote the group of sympletomorphismsby Symp(M,ω). A vetor �eld X is alled sympleti if its �ow preserves
ω, i.e., the Lie derivative of ω is the diretion of X . Note that aording tothe Cartan's formula

LXω = diXω + iXdωand sine dω = 0, X is sympleti if and only if iXω is losed. We denoteby X (M,ω) the spae of sympleti vetor �elds. It is obvious that anyHamiltonian vetor �eld is sympleti.The next result shows that, when M is losed (ompat without boundary),
X (M,ω) is the Lie algebra of the group Symp(M,ω).Proposition 3.1 Let (M,ω) be a losed sympleti manifold. Let (Xt) be asmooth family of vetor �elds on M and (φt) ∈ Diff(M) the smooth familyof di�eomorphisms generated by (Xt) via

d

dt
φt = Xt ◦ φt and φ0 = id.Then φt ∈ Symp(M,ω) for every t if and only if Xt ∈ X (M,ω). Moreover,if X, Y ∈ X (M,ω) [X, Y ] ∈ X (M,ω) and

i[X,Y ]ω = dH where H = ω(X, Y ).18



Proof. The �rst statement follows from the relation
d

dt
φ∗
tω = φ∗

t (diXt
ω + iXt

dω) = φ∗
tdiXt

ω.On the other hand, the relations
L[X,Y ]ω = LX ◦ LY ω − LY ◦ LXω and i[X,Y ]ω = LY iXω + iYLXωimply in a obvious way the seond statement. �Example 1 1. The standard model of a sympleti manifold is the Eu-lidean spae R

2n endowed with its anonial sympleti form
ω0 =

n∑

i=1

dxi ∧ dyi,where (x1, . . . , xn, y1, . . . , yn) are the anonial linear oordinates of R2n.2. Any oriented surfae S endowed with its area form is a sympleti man-ifold. For instane the 2-sphere S2 endowed with the 2-form
ω((x, u), (x, v)) = 〈x, u× v〉is a sympleti manifold.3. The anonial sympleti struture of the otangent bundle.Let L be a smooth manifold, onsider T ∗L the total spae of its otan-gent bundle and denote by π : T ∗L −→ L the anonial projetion. TheLiouville form in T ∗L is the di�erential 1-form λ in T ∗L given by

λ(Zα) = α(Tαπ(Zα)),where α ∈ T ∗L and Zα ∈ Tα(T
∗L). Let (q1, . . . , qn) be a oordinatessystem on L and (q1, . . . , qn, p1, . . . , pn) the assoiated oordinates sys-tem on T ∗L. Then

λ =
n∑

i=1

pidqi.This relation implies that
dλ =

n∑

i=1

dpi ∧ dqiand hene (T ∗L, dλ) is a sympleti manifold. This sympleti strutureon T ∗L is alled anonial. 19



Darboux's Theorem asserts that there is no loal invariant in sympletigeometry, more preisely, in a given dimension all sympleti forms are loallydi�eomorphi.Theorem 3.1 Let (M,ω) be a sympleti manifold and m ∈ M . Then thereexists a oordinates system (x1, . . . , xn, y1, . . . , yn) suh that
ω =

n∑

i=1

dxi ∧ dyi.Suh oordinates are alled Darboux's oordinates.Proof. Aording to Theorem 2.1 there is a oordinates system (q1, . . . , qn, p1, . . . , pn)de�ned on an open set U ontaining m suh that if ω1 =
n∑

i=1

dqi ∧ dpi then
ω(m) = ω1(m).Moreover, sine ω1 − ω0 is losed there exists σ ∈ Ω1(U) suh that
dσ = ω1 − ω0.For t ≥ [0, 1] put ωt = ω + tdσ. Sine ωt(m) is nondegenerate and [0, 1]is ompat, we an hoose U suh that ωt is nondegenerate on U for every

t ≥ [0, 1]. We onsider now the family of vetor �elds (Xt) de�ned by
iXt

ωt = −σand Φt the family of di�eomorphisms de�ned by
d

dt
Φt = Xt ◦ Φt and Φ0 = id.Sine Xt(m) = 0 for every t ∈ [0, 1] we an shrink U if neessary to get Φtde�ned for every t ∈ [0, 1] and Φt(U) ⊂ U . Now

d

dt
Φ∗

tωt = Φ∗
t

(
d

dt
ωt + iXt

dωt + diXt
ωt

)

= Φ∗
t (dσ − dσ) = 0,and hene Φ∗

1ω1 = ω and the theorem follows. �A Hamiltonian system is a triple (M,ω,H) where (M,ω) is a sym-pleti manifold and H a funtion on M . The Hamiltonian vetor �eld XH20



assoiated to H has a �ow alled Hamiltonian �ow and its integral urvesare solution of
ẋ(t) = XH(x(t)).If (x1, . . . , xn, y1, . . . , yn) are Darboux's oordinates then this di�erential sys-tem is equivalent to

ẋi =
∂H

∂yi
and ẏi = −∂H

∂xi

, i = 1, . . . , n. (6)Example 2 The harmoni osillator is the Hamiltonian system (R2, ω0, H)with
H(x, y) =

1

2
(x2 + y2).The di�erential system (6) is written

ẋ = y and ẏ = −xwhih equivalent to
ẋ = y and ẍ = −x.The orresponding Hamiltonian �ow is given by

Φt(x, y) = (x cos t+ y sin t,−x sin t + y cos t).4 The Hofer-Zehnder CapaityIn this �nal setion we establish the existene of the Hofer-Zehnder apaityand hene prove the Gromov's nonsqueezing theorem. This apaity is basedon properties of the periodi orbits of Hamiltonian �ows on a sympletimanifold (M,ω) and was introdued in [5℄.Let (M,ω) be a sympleti manifold. Denote the set of all nonnegativeHamiltonian funtions whih are ompatly supported on the interior of Mand whih attain their maximum on some open set by
H(M) =

{
H ∈ C∞

0 (intM)|H ≥ 0, H|U = supH form some open set U}
.For every funtion H onsider the time-independent Hamiltonian �ow φt

H ∈
Sympc(M,ω) generated by the Hamiltonian vetor �eld XH . An orbit x(t) =
φt
H(t) is alled T -periodi if x(t+T ) = x(t) for every t ∈ R. Call a funtion21



H ∈ H(M) admissible if the orresponding Hamiltonian �ow has no non-onstant T -periodi orbit with period T ≤ 1. In other word, every nonon-stant periodi orbit has period > 1. Denote the set of admissible Hamiltonianfuntions by
Had(M,ω) = {H ∈ H(M)| H admissible} .The following lemma shows that for every Hamiltonian funtion H ∈ H(M)the funtion ǫH is admissible for ǫ > 0 su�iently small. Roughly speaking,if a vetor �eld is small then its orbits are slow and hene the period is long.Lemma 4.1 Let x(t) = x(t+ T ) ∈ R

m be a periodi solution of the di�eren-tial equation
ẋ(t) = f(x),where f : Rm −→ R

m is ontinuously di�erentiable. If
T. sup

x

‖df(x)‖ < 1then x(t) is onstant.Proof. Sine x(0) = x(T ) an easy alulation shows that
ẋ(t) =

∫ t

0

s

T
ẍ(s)ds+

∫ T

t

s− T

T
ẍ(s)ds.This implies

|ẋ(t)| ≤
∫ T

0

|ẍ(s)|ds ≤
√
T‖ẍ‖L2[0,T ]and hene

‖ẋ‖L2 ≤ T‖ẍ‖L2 .Note denote ǫ = sup ‖df(x)‖ and note that
|ẍ| ≤ ‖df(x)‖.|ẋ| ≤ ǫ|ẋ|.Hene

‖ẍ‖L2 ≤ ǫ‖ẋ‖L2 ≤ ǫT‖ẍ‖L2.Sine ǫT < 1 it follows ẍ(t) ≡ 0. Hene ẋ(t) is onstant and periodi andhene x(t) is onstant. �The Hofer-Zehnder apaity of (M,ω) is de�ned by
cHZ(M,ω) = sup

H∈Had(M,ω)

‖H‖22



where ‖H‖ is the Hofer norm given by
‖H‖ = sup

x∈M
H(x)− inf

x∈M
H(x).One an dedue easily from Lemma 4.1 that for every nonempty symple-ti manifold (M,ω), cHZ(M,ω) > 0.The following theorem is due to Hofer and Zehnder [5℄.Theorem 4.1 The map (M,ω) 7→ cHZ(M,ω) satis�es the monotoniity,onformality and normalization axioms of sympleti apaity. Moreover,

cHZ(B
2n(r), ω0) = cHZ(Z

2n(r), ω0) = πr2for every r > 0.The proof of this theorem rests on the following existene result for periodiorbits of Hamiltonian di�erential equation in R
2n whih a proof will be givenin the last setion.Theorem 4.2 Assume H ∈ H(Z2n(1)) with supH > π. Then the Hamilto-nian �ow of H has a nononstant periodi orbit of period 1.Proof of Theorem 4.1.

• Monotoniity. Let φ : (M1, ω1) −→ (M2, ω2) be a sympleti embed-ding with dimM1 = dimM2. If H1 : M1 −→ R is a ompatly sup-ported funtion then there is a unique ompatly supported funtion
H2 : M2 −→ R suh that H2 vanishes on M2−φ(M1) and H1 = H2 ◦φ.Sine H1 is ompatly supported the funtion H2 is smooth. Sine
φ intertwine the Hamiltonian �ows of H1 et H2 there is a one-to-oneorrespondene of nononstant periodi orbits of these �ow. Hene

cHZ(M1, ω1) = sup
H1∈Had(M1,ω1)

‖H1‖

= sup
H2∈Had(M2,ω2)

supp(H2)⊂φ(M1)

‖H2‖

≤ cHZ(M2, ω2).This proves monotoniity.
• Conformality. Sine the Hamiltonian vetor �eld of H with respetto ω agree with the Hamiltonian �eld of λH with respet to λω andhene

Had(M,λω) = {λH|H ∈ Had(M,ω)}and onformality follows. 23



• Non triviality. We shall now prove the inequality cHZ(B
2n(1), ω0) ≥

π. Let ǫ > 0 and hoose a smooth funtion f : [0, 1] −→ R suh that
∀r, −π < f ′(r) ≤ 0, f(r) = π−ǫ, for r near 0 and f(r) = 0 for r near 1.De�ne H(z) = f(|z|2) for z ∈ B2n(1). Then H ∈ H(B2n) and ‖H‖ =
π − ǫ. We must prove now that H is admissible. But the orbits of theHamiltonian �ow are easy to alulate expliitly. Aording to (6), theHamiltonian di�erential equation of H is of the form

ẋ = 2f ′(|z|2)y and ẏ = −2f ′(|z|2)xand it follows that r = |z(t)|2 is onstant along the solutions. In om-plex notation z = x+ ıy the solutions are z(t) = exp(−2ıf ′(r)t)z0 andare all periodi. They are nononstant whenever f ′(r) 6= 0 and in thisase th period is T = π
f ′(r)

> 1. Hene for every ǫ > 0 there is anadmissible Hamiltonian funtion H ∈ H(B2n) with ‖H‖ = π − ǫ andthis proves the inequality
cHZ(B

2n(1), ω0) ≥ π.Now Theorem 4.2 asserts that for every H ∈ H(Z2n(1)) with ‖H‖ > πthe orresponding Hamiltonian �ow has nononstant periodi orbit ofperiod 1. Hene any suh funtion is not admissible and this implies
cHZ(Z

2n(1), ω0) ≤ π.By the monotoniity axiom we have
cHZ(B

2n(1), ω0) = cHZ(Z
2n(1), ω0) = πand this proves the theorem. �We shall now restrit the disussion to subsets of R

2n. These subsetsare not required to be open, i.e, they are not required to be manifolds. Asympleti embedding φ : A −→ R
2n de�ned on an arbitrary subset A ⊂ R

2nis by de�nition a map whih extends to a sympleti embedding of an openneighborhood of A. Now a sympleti apaity c on R
2n assigns a number

c(A) ∈ [0,∞[ to every subset A ⊂ R
2n suh that the following holds:

• (Monotoniity) If there is a sympletomorphism φ of R
2n suh that

φ(A) ⊂ B then c(A) ≤ c(B).
• (Conformality) c(λA) = λ2

c(A).24



• (Non triviality) c(B2n(1)) > 0 and c(Z2n(1)) < ∞.For every subset A ⊂ R
2n de�ne

wG(A) = sup
{
πr2|B2n(r) embeds sympletially inA}and

wG(A) = inf
{
πr2|A embeds sympletially inZ2n(r)

}It follows again from Gromov's nonsqueezing theorem that wG(A) and wGsatisfy the axioms of a sympleti apaity on R
2n. If c is any other apaityon R

2n we have
wG(A) ≤ c(A) ≤ wG(A), (7)for every subset A ∈ R

2n.Example 3 Reall from Lemma 2.4 that given any ellipsoid
E =

{

(x1, . . . , x2n) ∈ R
2n|

2n∑

i,j=1

aijxixj ≤ 1

}there is a linear sympletomorphism Φ ∈ Sp(2n) suh that
Φ(E) = E(r) :=

{

(x1, . . . , xn, y1, . . . , yn) ∈ R
2n|

n∑

j=1

x2
j + y2j
r2j

≤ 1

}

,for some n-uple r = (r1, . . . , rn) with 0 < r1 ≤ . . . ≤ rn. Moreover, r isentirely determined by E. Sine
B2n(r1) ⊂ ΦE ⊂ Z2n(r1)it follows that
c(E) = πr21 = wL(E)for every sympleti apaity c whih satis�es (1). Here wL denotes the linearsympleti width and the last equation follows from Theorem 2.5.A sympletomorphism of a sympleti manifold (M,ω) is a di�eomor-phism φ suh that φ∗ω = ω. This de�nition involves the �rst derivatives of φand so annot be generalized in an obvious way to homeomorphisms. This inontrast to the volume-preserving ase: a di�eomorphism preserves a volumeform if and only if it preserves the orresponding measure. Eliasberg in [3, 4℄and, independently, Ekeland-Hofer in [2℄ realized that one an use apaitiesin a similar way to give an alternative de�nition of a sympletomorphismwhih does not involve derivatives. Their observation is summarized in thefollowing proposition. 25



Proposition 4.1 Let φ : R2n −→ R
2n be a di�eomorphism and c be a sym-pleti apaity whih satis�es (1). Then the following are equivalent.

(i) φ preserves the apaity if ellipsoids, i.e., c(φ(E)) = c(E) for every ellip-soids E in R
2n.

(ii) φ is either a sympletomorphism or anti-sympletomorphism, i.e., φ∗ω =
±ω.Here we onsider ellipsoids with arbitrary enter. It follows from thede�nition of a sympleti apaity that every sympletomorphism and ev-ery anti-sympletomorphism preserves the sympleti apaity of ellipsoids.For anti-sympletomorphism one needs the additional elementary fat thatfor every ellipsoid there exists an anti-sympletomorphism whih maps thisellipsoid to itself. In Theorem 2.6 we have shown that, onversely, everylinear map whih preserves the linear sympleti width of ellipsoids is eithersympleti or anti-sympleti. Proposition 4.1 is the nonlinear version of thisresult. The proof is elementary. The only deep observation is the existeneof a sympleti apaity. The proof is based on the following lemma.Lemma 4.2 Let φm : R2n −→ R

2n a sequene of homeomorphisms onverg-ing to a homeomorphism φ;R2n −→ R
2n, uniformly on ompat sets. Assumethat φm preserves the apaity of ellipsoids for every m. Then φ preservesthe apaity of ellipsoids.Proof. without loss of generality we onsider only ellipsoids entered at zero.We �rst prove that for every ellipsoids E and every positive number λ < 1there exists a m0 > 0 suh that for every m ≥ m0

φm(λE) ⊂ φ(E) ⊂ φm(λ
−1E). (8)To see this, abbreviate fm = φ−1 ◦ φm. Then fm and f−1

m onverges to theidentity, uniformly on ompat sets. So the inlusions fm(λE) ⊂ E and
f−1
m (λE) ⊂ E are obvious for large m and (8) follows. This equation nowimplies that

λ2
c(E) ≤ c(φ(E)) ≤ λ−2

c(E).Sine λ < 0 was hosen arbitrarily lose to 1 it follows that φ preserves theapaity of ellipsoids. �Proof of Proposition 4.1. Assume (i). Then the maps
φt(z) =

1

t
φ(tz)are di�eomorphisms of R2n whih preserve the apaity of ellipsoids and theyonverge, uniformly on ompat sets the the linear map Φ = dφ(0). Hene26



by Lemma 4.2, Φ preserves the apaity of ellipsoids. We have shown (f.Example 3) that the apaity of ellipsoids agrees with its sympleti width.It follows from Theorem 2.6 that Φ∗ω0 = ±ω0. The same holds when Φ isreplaed by dφ(z) for any z ∈ R
2n and, by ontinuity, the sign is independentof z. Thus we have proved that (i) implies (ii). The onverse is obvious. �Proposition 4.1 gives rise to the de�nition of a sympleti homeomor-phism. Let n be odd. Then an orientation-preserving homeomorphism φ of

R
2n is said to be sympleti if, for some apaity c on subset of R2n, and allsu�iently small ellipsoids E we have φ(c(E)) = c(E). If n is even, φ is saidto be sympleti if the homeomorphism φ× id of R2n+2 satis�es the previousonditions.One an translate this de�nition to an arbitrary sympleti manifold usingDarboux's theorem. But they are many open questions. For example, if

φ preserves the apaity of all small ellipsoids, mus it also preserve the a-paity of large ellipsoids? Must these sympleti homeomorphisms preservevolume?Referenes[1℄ Conley C. and Zehnder E., Morse type index theory for �ows and pe-riodi solutions for Hamiltonian systems, Communiations in Pure andApplied Mathematis, 37, (1984) 207-253.[2℄ Ekeland I. and Hofer H., Sympleti topology and Hamiltonian dynamis,Mathematishe Zeitshrift, 200, (1989) 355-378.[3℄ Eliasberg Y., Rigidity of sympleti and ontat strutures, Abstrat onreports to the 7th Leningrad International Topology Conferene (1982).[4℄ Eliasberg Y., A theorem on the struture of wave front and its applia-tions in sympleti topology, Funtional Analysis and Appliations, 20,(1987) 65-72.[5℄ Hofer H.and Zehnder E., A new apaity for sympleti manifolds, InAnalysis et etera (ed. P.H. Rabinowitz and E. Zehnder) (1990) 405-429, Aademi Press, New York.[6℄ Gromov M., Pseudo holomorphi urves in sympleti manifolds, Inven-tiones Mathematiae 82,(1985) 307-347.[7℄ MDu� D. and Salamon D., Introdution to sympleti topology, OxfordMathematial Monographs, Calendron Press Oxford (1998).27


